function model = initmodel_static( settings, i_numDim ) % function model = initmodel_static( settings, i_numDim ) % % BRIEF % Initialize model structure. % % OUTPUT % model = initmodel( settings ) % model.maxsize = [y,x] size of root filter in HOG cells % ...TODO % % author: Alexander Freytag % date: 13-02-2014 (dd-mm-yyyy) (last updated) % %% how many dimensions does our feature has? % for DPM-HOG features, this would result in the following layout % how many dimensions does our resulting 'augmented HoG feature' has? % see DPM Paper from 2010 for more details % 2*numberBins for keeping gradient sign + % 1*numberBins without the sign + % 4 strange texture feature dimensions + % 1 dimension constant to zero % -> default: 32 dimensions sizeOfModel = [ settings.lda.bg.i_numCells, ... i_numDim... ]; %% initialize the rest of the model structure %empty model of according size model.w = zeros(sizeOfModel); % size of root filter in HOG cells model.i_numCells = sizeOfModel(1:2); % size of each cell in pixel model.i_binSize = settings.lda.bg.i_binSize; % strange interval model.interval = settings.lda.bg.interval; %threshold to reject detection with score lwoer than that model.d_detectionThreshold ... = settings.lda.d_detectionThreshold; %negative mean, cov matrix, and stuff like that model.bg = settings.lda.bg; %======== ======== ======== ======== % add here noise model for % modeling de-noising effect %======== ======== ======== ======== % this adds noise on the main diagonal of the covariance matrix model.lda.lambda = settings.lda.lambda; %%% this additionally adds a drop-out noise model model.lda.b_noiseDropOut = settings.lda.b_noiseDropOut; model.lda.d_dropOutProb = settings.lda.d_dropOutProb; end