12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849 |
- function ldaStuff = initLDAStuff( ny, nx, modeltemplate)
- % function ldaStuff = initLDAStuff( ny, nx, modeltemplate)
- %
- % BRIEF:
- % At the beginning, every detector is built only from a single
- % block (see the 1-SVM paper for motivation details)
- %
- % Lateron, further blocks are added to this struct increasing the
- % number of training samples of every detector
- %
- % INPUT:
- % ny -- ysize of our HoG features, assumed to be constant
- % nx -- xsize of our HoG features, assumed to be constant
- % modeltemplate -- template for best LDA model (size) determined by who code
- %
- % OUTPUT:
- % ldaStuff -- struct containing following fields:
- % ldaStuff.R -- covariance matrix of all data
- % ldaStuff.neg -- mean of universal negative data
- % ldaStuff.modelTemplate -- model template for LDA models
- %this needs to be done only ones since our parameters are always the same
- model = modeltemplate;
-
- if ( isfield(modeltemplate.lda,'b_noiseDropOut') && ~isempty(modeltemplate.lda.b_noiseDropOut) )
- model.lda.b_noiseDropOut = modeltemplate.lda.b_noiseDropOut;
- end
-
- if ( isfield(modeltemplate.lda,'d_dropOutProb') && ~isempty(modeltemplate.lda.d_dropOutProb) )
- model.lda.d_dropOutProb = modeltemplate.lda.d_dropOutProb;
- end
-
- if ( isfield(modeltemplate.lda,'lambda') && ~isempty(modeltemplate.lda.lambda) )
- model.lda.lambda = modeltemplate.lda.lambda;
- end
-
- [ldaStuff.R,ldaStuff.neg] = whitenWithDropout(model.bg, model.lda, nx,ny);
-
- ldaStuff.modelTemplate = modeltemplate;
-
- %per default, we work on all dimensions
- %however, DPM HOG features have as last feature dimension truncation
- %features constant to 0. In thoses cases, we set the flag to true and
- %ignore the last dimension in further processing stages
- ldaStuff.b_ignoreLastDim = false;
-
- end
|