/** * @file ILSConjugateGradientsLanczos.cpp * @brief Iteratively solving linear equation systems with the conjugate gradients method using Lanczos process * @author Paul Bodesheim * @date 20/01/2012 (dd/mm/yyyy) */ #include #include "ILSConjugateGradientsLanczos.h" using namespace NICE; using namespace std; ILSConjugateGradientsLanczos::ILSConjugateGradientsLanczos( bool verbose, uint maxIterations, double minDelta) //, bool useFlexibleVersion ) { this->minDelta = minDelta; this->maxIterations = maxIterations; this->verbose = verbose; // this->useFlexibleVersion = useFlexibleVersion; } ILSConjugateGradientsLanczos::~ILSConjugateGradientsLanczos() { } // void ILSConjugateGradientsLanczos::setJacobiPreconditionerLanczos ( const Vector & jacobiPreconditioner ) // { // this->jacobiPreconditioner = jacobiPreconditioner; // } int ILSConjugateGradientsLanczos::solveLin ( const GenericMatrix & gm, const Vector & b, Vector & x ) { if ( b.size() != gm.rows() ) { fthrow(Exception, "Size of vector b (" << b.size() << ") mismatches with the size of the given GenericMatrix (" << gm.rows() << ")."); } if ( x.size() != gm.cols() ) { x.resize(gm.cols()); x.set(0.0); // bad initial solution, but whatever } // if ( verbose ) cerr << "initial solution: " << x << endl; // CG-Method based on Lanczos vectors: implementation based on the following: // // C.C. Paige and M.A. Saunders: "Solution of sparse indefinite systems of linear equations". SIAM Journal on Numerical Analysis, p. 617--629, vol. 12, no. 4, 1975 // // http://www.netlib.org/templates/templates.pdf // // init some helping vectors Vector Av(b.size(),0.0); // Av = A * v_j Vector Ac(b.size(),0.0); // Ac = A * c_j Vector r(b.size(),0.0); // current residual Vector *v_new = new Vector(x.size(),0.0); // new Lanczos vector v_j Vector *v_old = new Vector(x.size(),0.0); // Lanczos vector v_{j-1} of the iteration before Vector *v_older = 0; // Lanczos vector v_{j-2} of the iteration before Vector *c_new = new Vector(x.size(),0.0); // current update vector c_j for the solution x Vector *c_old = 0; // update vector of iteration before // declare some helpers double d_new = 0; // current element of diagonal matrix D normally obtained from Cholesky factorization of tridiagonal matrix T, where T consists alpha and beta as below double d_old = 0; // corresponding element of the iteration before double l_new = 0; // current element of lower unit bidiagonal matrix L normally obtained from Cholesky factorization of tridiagonal matrix T double p_new = 0; // current element of vector p, where p is the solution of the modified linear system double p_old = 0; // corresponding element of the iteration before double alpha = 0; // alpha_j = v_j^T * A * v_j for new Lanczos vector v_j double beta = b.normL2(); // beta_1 = norm(b), in general beta_j = norm(v_j) for new Lanczos vector v_j // first iteration + initialization, where b will be used as the first Lanczos vector *v_new = (1/beta)*b; // init v_1, v_1 = b / norm(b) gm.multiply(Av,*v_new); // Av = A * v_1 alpha = v_new->scalarProduct(Av); // alpha_1 = v_1^T * A * v_1 d_new=alpha; // d_1 = alpha_1, d_1 is the first element of diagonal matrix D p_new = beta/d_new; // p_1 = beta_1 / d_1 *c_new = *v_new; // c_1 = v_1 Ac = Av; // A*c_1 = A*v_1 // store current solution Vector current_x = (p_new*(*c_new)); // first approx. of x: x_1 = p_1 * c_1 // calculate current residual r = b - (p_new*Ac); double res = r.scalarProduct(r); // store minimal residual double res_min = res; // store optimal solution in output variable x x = current_x; double delta_x = fabs(p_new) * c_new->normL2(); if ( verbose ) { cerr << "ILSConjugateGradientsLanczos: iteration 1 / " << maxIterations << endl; if ( current_x.size() <= 20 ) cerr << "ILSConjugateGradientsLanczos: current solution " << current_x << endl; cerr << "ILSConjugateGradientsLanczos: delta_x = " << delta_x << endl; cerr << "ILSConjugateGradientsLanczos: residual = " << r.scalarProduct(r) << endl; } // start with second iteration uint j = 2; while (j <= maxIterations ) { // prepare d and p for next iteration d_old = d_new; p_old = p_new; // prepare vectors v_older, v_old, v_new for next iteration if ( v_older == 0) v_older = v_old; else { delete v_older; v_older = v_old; } v_old = v_new; v_new = new Vector(v_old->size(),0.0); // prepare vectors c_old, c_new for next iteration if ( c_old == 0 ) c_old = c_new; else { delete c_old; c_old = c_new; } c_new = new Vector(c_old->size(),0.0); //start next iteration: // calulate new Lanczos vector v_j based on older ones *v_new = Av - (alpha*(*v_old)) - (beta*(*v_older)); // unnormalized v_j = ( A * v_{j-1} ) - ( alpha_{j-1} * v_{j-1} ) - ( beta_{j-1} * v_{j-2} ) // calculate new weight beta_j and normalize v_j beta = v_new->normL2(); // beta_j = norm(v_j) v_new->normalizeL2(); // normalize v_j // calculate new weight alpha_j gm.multiply(Av,*v_new); // Av = A * v_j alpha = v_new->scalarProduct(Av); // alpha_j = v_j^T * A * v_j // calculate l_j and d_j as the elements of the Cholesky Factorization of current tridiagonal matrix T, where T = L * D * L^T with diagonal matrix D and // lower bidiagonal matrix L; l_j and d_j are necessary for computing the new update vector c_j for the solution x and the corresponding weight l_new = beta/sqrt(d_old); // unnormalized l_j = beta_j / sqrt(d_{j-1}) d_new = alpha-(l_new*l_new); // d_j = alpha_j - l_j^2 l_new/=sqrt(d_old); // normalize l_j by sqrt(d_{j-1}) // calculate the new weight p_j of the new update vector c_j for the solution x p_new = -p_old*l_new*d_old/d_new; // calculate the new update vector c_j for the solution x *c_new = *v_new - (l_new*(*c_old)); // calculate new residual vector Ac = Av - (l_new*Ac); r-=p_new*Ac; res = r.scalarProduct(r); // update solution x current_x+=(p_new*(*c_new)); if ( verbose ) { cerr << "ILSConjugateGradientsLanczos: iteration " << j << " / " << maxIterations << endl; if ( current_x.size() <= 20 ) cerr << "ILSConjugateGradientsLanczos: current solution " << current_x << endl; } // store optimal x that produces smallest residual if (res < res_min) { x = current_x; res_min = res; } // check convergence delta_x = fabs(p_new) * c_new->normL2(); if ( verbose ) { cerr << "ILSConjugateGradientsLanczos: delta_x = " << delta_x << endl; cerr << "ILSConjugateGradientsLanczos: residual = " << r.scalarProduct(r) << endl; } if ( delta_x < minDelta ) { if ( verbose ) cerr << "ILSConjugateGradientsLanczos: small delta_x" << endl; break; } j++; } // if ( verbose ) { cerr << "ILSConjugateGradientsLanczos: iterations needed: " << std::min(j,maxIterations) << endl; cerr << "ILSConjugateGradientsLanczos: minimal residual achieved: " << res_min << endl; if ( x.size() <= 20 ) cerr << "ILSConjugateGradientsLanczos: optimal solution: " << x << endl; // } delete v_new; delete v_old; delete v_older; delete c_new; delete c_old; return 0; }