/** * @file ILSSymmLqLanczos.cpp * @brief Iteratively solving linear equation systems with the symmetric LQ (SYMMLQ) method using Lanczos process * @author Paul Bodesheim * @date 20/01/2012 (dd/mm/yyyy) */ #include #include "ILSSymmLqLanczos.h" using namespace NICE; using namespace std; ILSSymmLqLanczos::ILSSymmLqLanczos( bool verbose, uint maxIterations, double minDelta) //, bool useFlexibleVersion ) { this->minDelta = minDelta; this->maxIterations = maxIterations; this->verbose = verbose; // this->useFlexibleVersion = useFlexibleVersion; } ILSSymmLqLanczos::~ILSSymmLqLanczos() { } // void ILSSymmLqLanczos::setJacobiPreconditionerLanczos ( const Vector & jacobiPreconditioner ) // { // this->jacobiPreconditioner = jacobiPreconditioner; // } int ILSSymmLqLanczos::solveLin ( const GenericMatrix & gm, const Vector & b, Vector & x ) { if ( b.size() != gm.rows() ) { fthrow(Exception, "Size of vector b (" << b.size() << ") mismatches with the size of the given GenericMatrix (" << gm.rows() << ")."); } if ( x.size() != gm.cols() ) { x.resize(gm.cols()); x.set(0.0); // bad initial solution, but whatever } // if ( verbose ) cerr << "initial solution: " << x << endl; // SYMMLQ-Method based on Lanczos vectors: implementation based on the following: // // C.C. Paige and M.A. Saunders: "Solution of sparse indefinite systems of linear equations". SIAM Journal on Numerical Analysis, p. 617--629, vol. 12, no. 4, 1975 // // http://www.netlib.org/templates/templates.pdf // // declare some helpers double gamma = 0.0; double gamma_bar = 0.0; double alpha = 0.0; // alpha_j = v_j^T * A * v_j for new Lanczos vector v_j double beta = b.normL2(); // beta_1 = norm(b), in general beta_j = norm(v_j) for new Lanczos vector v_j double beta_next = 0.0; // beta_{j+1} double c_new = 0.0; double c_old = -1.0; double s_new = 0.0; double s_old = 0.0; double z_new = 0.0; double z_old = 0.0; double z_older = 0.0; double delta_new = 0.0; double epsilon_next = 0.0; // init some helping vectors Vector Av(b.size(),0.0); // Av = A * v_j Vector Ac(b.size(),0.0); // Ac = A * c_j Vector *v_new = new Vector(b.size(),0.0); // new Lanczos vector v_j Vector *v_old = 0; // Lanczos vector of the iteration before: v_{j-1} Vector *v_next = new Vector(b.size(),0.0); // Lanczos vector of the next iteration: v_{j+1} Vector *w_new = new Vector(b.size(),0.0); Vector *w_bar = new Vector(b.size(),0.0); Vector x_L (b.size(),0.0); // Vector x_C (b.size(),0.0); // x_C is a much better approximation than x_L (according to the paper mentioned above) // NOTE we store x_C in output variable x and only update this solution if the residual decreases (we are able to calculate the residual of x_C without calculating x_C) // first iteration + initialization, where b will be used as the first Lanczos vector *v_new = (1/beta)*b; // init v_1, v_1 = b / norm(b) gm.multiply(Av,*v_new); // Av = A * v_1 alpha = v_new->scalarProduct(Av); // alpha_1 = v_1^T * A * v_1 gamma_bar = alpha; // (gamma_bar_1 is equal to alpha_1 in ILSConjugateGradientsLanczos) *v_next = Av - (alpha*(*v_new)); beta_next = v_next->normL2(); v_next->normalizeL2(); gamma = sqrt( (gamma_bar*gamma_bar) + (beta_next*beta_next) ); c_new = gamma_bar/gamma; s_new = beta_next/gamma; z_new = beta/gamma; *w_bar = *v_new; *w_new = c_new*(*w_bar) + s_new*(*v_next); *w_bar = s_new*(*w_bar) - c_new*(*v_next); x_L = z_new*(*w_new); // first approximation of x // calculate current residual of x_C double res_x_C = (beta*beta)*(s_new*s_new)/(c_new*c_new); // store minimal residual double res_x_C_min = res_x_C; // store optimal solution x_C in output variable x instead of additional variable x_C x = x_L + (z_new/c_new)*(*w_bar); // x_C = x_L + (z_new/c_new)*(*w_bar); // calculate delta of x_L double delta_x_L = fabs(z_new) * w_new->normL2(); if ( verbose ) { cerr << "ILSSymmLqLanczos: iteration 1 / " << maxIterations << endl; if ( x.size() <= 20 ) cerr << "ILSSymmLqLanczos: current solution x_L: " << x_L << endl; cerr << "ILSSymmLqLanczos: delta_x_L = " << delta_x_L << endl; } // start with second iteration uint j = 2; while (j <= maxIterations ) { // prepare next iteration if ( v_old == 0 ) v_old = v_new; else { delete v_old; v_old = v_new; } v_new = v_next; v_next = new Vector(b.size(),0.0); beta = beta_next; z_older = z_old; z_old = z_new; s_old = s_new; res_x_C *= (c_new*c_new); // start next iteration: // calculate next Lanczos vector v_ {j+1} based on older ones gm.multiply(Av,*v_new); alpha = v_new->scalarProduct(Av); *v_next = Av - (alpha*(*v_new)) - (beta*(*v_old)); // calculate v_{j+1} beta_next = v_next->normL2(); // calculate beta_{j+1} v_next->normalizeL2(); // normalize v_{j+1} // calculate elements of matrix L_bar_{j} gamma_bar = -c_old*s_new*beta - c_new*alpha; // calculate gamma_bar_{j} delta_new = -c_old*c_new*beta + s_new*alpha; // calculate delta_{j} //NOTE updating c_old after using it to calculate gamma_bar and delta_new is important!! c_old = c_new; // calculate helpers (equation 5.6 in the paper mentioned above) gamma = sqrt( (gamma_bar*gamma_bar) + (beta_next*beta_next) ); // calculate gamma_{j} c_new = gamma_bar/gamma; // calculate c_{j-1} s_new = beta_next/gamma; // calculate s_{j-1} // calculate next component z_{j} of vector z z_new = - (delta_new*z_old + epsilon_next*z_older)/gamma; //NOTE updating epsilon_next after using it to calculate z_new is important!! epsilon_next = s_old*beta_next; // calculate epsilon_{j+1} of matrix L_bar_{j+1} // calculate residual of current solution x_C without computing this solution x_C before res_x_C *= (s_new*s_new)/(c_new*c_new); // we only update our solution x (originally x_C ) if the residual is smaller if ( res_x_C < res_x_C_min ) { x = x_L + (z_new/c_new)*(*w_bar); // x_C = x_L + (z_new/c_new)*(*w_bar); // update x res_x_C_min = res_x_C; } // calculate new vectors w_{j} and w_bar_{j+1} according to equation 5.9 of the paper mentioned above *w_new = c_new*(*w_bar) + s_new*(*v_next); *w_bar = s_new*(*w_bar) - c_new*(*v_next); x_L += z_new*(*w_new); // update x_L if ( verbose ) { cerr << "ILSSymmLqLanczos: iteration " << j << " / " << maxIterations << endl; if ( x.size() <= 20 ) cerr << "ILSSymmLqLanczos: current solution x_L: " << x_L << endl; } // check convergence delta_x_L = fabs(z_new) * w_new->normL2(); if ( verbose ) { cerr << "ILSSymmLqLanczos: delta_x_L = " << delta_x_L << endl; cerr << "ILSSymmLqLanczos: residual = " << res_x_C << endl; } if ( delta_x_L < minDelta ) { if ( verbose ) cerr << "ILSSymmLqLanczos: small delta_x_L" << endl; break; } j++; } // if ( verbose ) { cerr << "ILSSymmLqLanczos: iterations needed: " << std::min(j,maxIterations) << endl; cerr << "ILSSymmLqLanczos: minimal residual achieved: " << res_x_C_min << endl; if ( x.size() <= 20 ) cerr << "ILSSymmLqLanczos: optimal solution: " << x << endl; // } // WE DO NOT WANT TO CALCULATE THE RESIDUAL EXPLICITLY // // Vector tmp; // gm.multiply(tmp,x_C); // Vector res ( b - tmp ); // double res_x_C = res.scalarProduct(res); // // gm.multiply(tmp,x_L); // res = b - tmp; // double res_x_L = res.scalarProduct(res); // // if ( res_x_L < res_x_C ) // { // x = x_L; // if ( verbose ) // cerr << "ILSSymmLqLanczos: x_L used with residual " << res_x_L << " < " << res_x_C << endl; // // } else // { // // x = x_C; // if ( verbose ) // cerr << "ILSSymmLqLanczos: x_C used with residual " << res_x_C << " < " << res_x_L << endl; // // } delete v_new; delete v_old; delete v_next; delete w_new; delete w_bar; return 0; }