123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209 |
- /**
- * @file ILSConjugateGradientsLanczos.cpp
- * @brief Iteratively solving linear equation systems with the conjugate gradients method using Lanczos process
- * @author Paul Bodesheim
- * @date 20/01/2012 (dd/mm/yyyy)
- */
- #include <iostream>
- #include "ILSConjugateGradientsLanczos.h"
- using namespace NICE;
- using namespace std;
- ILSConjugateGradientsLanczos::ILSConjugateGradientsLanczos( bool verbose, uint maxIterations, double minDelta) //, bool useFlexibleVersion )
- {
- this->minDelta = minDelta;
- this->maxIterations = maxIterations;
- this->verbose = verbose;
- // this->useFlexibleVersion = useFlexibleVersion;
- }
- ILSConjugateGradientsLanczos::~ILSConjugateGradientsLanczos()
- {
- }
- // void ILSConjugateGradientsLanczos::setJacobiPreconditionerLanczos ( const Vector & jacobiPreconditioner )
- // {
- // this->jacobiPreconditioner = jacobiPreconditioner;
- // }
-
- int ILSConjugateGradientsLanczos::solveLin ( const GenericMatrix & gm, const Vector & b, Vector & x )
- {
- if ( b.size() != gm.rows() ) {
- fthrow(Exception, "Size of vector b (" << b.size() << ") mismatches with the size of the given GenericMatrix (" << gm.rows() << ").");
- }
- if ( x.size() != gm.cols() )
- {
- x.resize(gm.cols());
- x.set(0.0); // bad initial solution, but whatever
- }
- // if ( verbose ) cerr << "initial solution: " << x << endl;
- // CG-Method based on Lanczos vectors: implementation based on the following:
- //
- // C.C. Paige and M.A. Saunders: "Solution of sparse indefinite systems of linear equations". SIAM Journal on Numerical Analysis, p. 617--629, vol. 12, no. 4, 1975
- //
- // http://www.netlib.org/templates/templates.pdf
- //
- // init some helping vectors
- Vector Av(b.size(),0.0); // Av = A * v_j
- Vector Ac(b.size(),0.0); // Ac = A * c_j
- Vector r(b.size(),0.0); // current residual
- Vector *v_new = new Vector(x.size(),0.0); // new Lanczos vector v_j
- Vector *v_old = new Vector(x.size(),0.0); // Lanczos vector v_{j-1} of the iteration before
- Vector *v_older = 0; // Lanczos vector v_{j-2} of the iteration before
- Vector *c_new = new Vector(x.size(),0.0); // current update vector c_j for the solution x
- Vector *c_old = 0; // update vector of iteration before
- // declare some helpers
- double d_new = 0; // current element of diagonal matrix D normally obtained from Cholesky factorization of tridiagonal matrix T, where T consists alpha and beta as below
- double d_old = 0; // corresponding element of the iteration before
- double l_new = 0; // current element of lower unit bidiagonal matrix L normally obtained from Cholesky factorization of tridiagonal matrix T
- double p_new = 0; // current element of vector p, where p is the solution of the modified linear system
- double p_old = 0; // corresponding element of the iteration before
- double alpha = 0; // alpha_j = v_j^T * A * v_j for new Lanczos vector v_j
- double beta = b.normL2(); // beta_1 = norm(b), in general beta_j = norm(v_j) for new Lanczos vector v_j
-
- // first iteration + initialization, where b will be used as the first Lanczos vector
- *v_new = (1/beta)*b; // init v_1, v_1 = b / norm(b)
- gm.multiply(Av,*v_new); // Av = A * v_1
- alpha = v_new->scalarProduct(Av); // alpha_1 = v_1^T * A * v_1
- d_new=alpha; // d_1 = alpha_1, d_1 is the first element of diagonal matrix D
- p_new = beta/d_new; // p_1 = beta_1 / d_1
-
- *c_new = *v_new; // c_1 = v_1
- Ac = Av; // A*c_1 = A*v_1
-
- // store current solution
- Vector current_x = (p_new*(*c_new)); // first approx. of x: x_1 = p_1 * c_1
- // calculate current residual
- r = b - (p_new*Ac);
- double res = r.scalarProduct(r);
-
- // store minimal residual
- double res_min = res;
-
- // store optimal solution in output variable x
- x = current_x;
-
- double delta_x = fabs(p_new) * c_new->normL2();
- if ( verbose ) {
- cerr << "ILSConjugateGradientsLanczos: iteration 1 / " << maxIterations << endl;
- if ( current_x.size() <= 20 )
- cerr << "ILSConjugateGradientsLanczos: current solution " << current_x << endl;
- cerr << "ILSConjugateGradientsLanczos: delta_x = " << delta_x << endl;
- cerr << "ILSConjugateGradientsLanczos: residual = " << r.scalarProduct(r) << endl;
- }
-
- // start with second iteration
- uint j = 2;
- while (j <= maxIterations )
- {
- // prepare d and p for next iteration
- d_old = d_new;
- p_old = p_new;
-
- // prepare vectors v_older, v_old, v_new for next iteration
- if ( v_older == 0) v_older = v_old;
- else {
-
- delete v_older;
- v_older = v_old;
- }
- v_old = v_new;
- v_new = new Vector(v_old->size(),0.0);
-
- // prepare vectors c_old, c_new for next iteration
- if ( c_old == 0 ) c_old = c_new;
- else {
-
- delete c_old;
- c_old = c_new;
- }
- c_new = new Vector(c_old->size(),0.0);
-
- //start next iteration:
- // calulate new Lanczos vector v_j based on older ones
- *v_new = Av - (alpha*(*v_old)) - (beta*(*v_older)); // unnormalized v_j = ( A * v_{j-1} ) - ( alpha_{j-1} * v_{j-1} ) - ( beta_{j-1} * v_{j-2} )
- // calculate new weight beta_j and normalize v_j
- beta = v_new->normL2(); // beta_j = norm(v_j)
- v_new->normalizeL2(); // normalize v_j
- // calculate new weight alpha_j
- gm.multiply(Av,*v_new); // Av = A * v_j
- alpha = v_new->scalarProduct(Av); // alpha_j = v_j^T * A * v_j
- // calculate l_j and d_j as the elements of the Cholesky Factorization of current tridiagonal matrix T, where T = L * D * L^T with diagonal matrix D and
- // lower bidiagonal matrix L; l_j and d_j are necessary for computing the new update vector c_j for the solution x and the corresponding weight
- l_new = beta/sqrt(d_old); // unnormalized l_j = beta_j / sqrt(d_{j-1})
- d_new = alpha-(l_new*l_new); // d_j = alpha_j - l_j^2
- l_new/=sqrt(d_old); // normalize l_j by sqrt(d_{j-1})
- // calculate the new weight p_j of the new update vector c_j for the solution x
- p_new = -p_old*l_new*d_old/d_new;
- // calculate the new update vector c_j for the solution x
- *c_new = *v_new - (l_new*(*c_old));
- // calculate new residual vector
- Ac = Av - (l_new*Ac);
- r-=p_new*Ac;
- res = r.scalarProduct(r);
-
- // update solution x
- current_x+=(p_new*(*c_new));
-
- if ( verbose ) {
- cerr << "ILSConjugateGradientsLanczos: iteration " << j << " / " << maxIterations << endl;
- if ( current_x.size() <= 20 )
- cerr << "ILSConjugateGradientsLanczos: current solution " << current_x << endl;
- }
-
- // store optimal x that produces smallest residual
- if (res < res_min) {
-
- x = current_x;
- res_min = res;
- }
- // check convergence
- delta_x = fabs(p_new) * c_new->normL2();
- if ( verbose ) {
- cerr << "ILSConjugateGradientsLanczos: delta_x = " << delta_x << endl;
- cerr << "ILSConjugateGradientsLanczos: residual = " << r.scalarProduct(r) << endl;
- }
- if ( delta_x < minDelta ) {
- if ( verbose )
- cerr << "ILSConjugateGradientsLanczos: small delta_x" << endl;
- break;
- }
-
- j++;
- }
-
- // if ( verbose ) {
- cerr << "ILSConjugateGradientsLanczos: iterations needed: " << std::min<uint>(j,maxIterations) << endl;
- cerr << "ILSConjugateGradientsLanczos: minimal residual achieved: " << res_min << endl;
- if ( x.size() <= 20 )
- cerr << "ILSConjugateGradientsLanczos: optimal solution: " << x << endl;
- // }
-
- delete v_new;
- delete v_old;
- delete v_older;
- delete c_new;
- delete c_old;
- return 0;
- }
|