123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128 |
- /**
- * @file TestEigenValue.cpp
- * @brief TestEigenValue
- * @author Michael Koch
- * @date Di Aug 4 2009
- */
- #include "TestEigenValue.h"
- #include <string>
- #include "core/basics/cppunitex.h"
- #include "core/basics/numerictools.h"
- #include "core/vector/Distance.h"
- #include "core/algebra/EigValues.h"
- #include "core/algebra/EigValuesTRLAN.h"
- #include "core/algebra/GenericMatrix.h"
- #include "core/algebra/GMStandard.h"
- using namespace std;
- using namespace NICE;
- CPPUNIT_TEST_SUITE_REGISTRATION(TestEigenValue);
- void TestEigenValue::setUp()
- {
- }
- void TestEigenValue::tearDown()
- {
- }
- void TestEigenValue::TestEigenValueComputation()
- {
- // size of the matrix
- uint rows = 100;
- uint cols = rows;
-
- // number of eigenvalues used
- uint k = 10;
- uint maxiterations = 200;
- double mindelta = 1e-8;
-
- double sparse_prob = 0.3;
- int trlan_magnitude = 1;
- NICE::Matrix T(rows, cols, 0.0);
- // use a fixed seed, its a test case
- srand48(0);
- // generate random symmetric matrix
- for (uint i = 0 ; i < rows ; i++)
- for (uint j = i ; j < cols ; j++)
- {
- if (sparse_prob != 0.0)
- if (drand48() < sparse_prob)
- continue;
- T(i, j) = drand48();
- T(j, i) = T(i, j);
- }
- // create a positive definite matrix
- T = T*T;
- EigValues *eig;
- for (int trlan = 0;trlan <= 1;trlan++) //this is creepy but funny
- {
- if (trlan) //this is creepy but saves lot of code
- {
- #ifdef NICE_USELIB_TRLAN
- eig = new EigValuesTRLAN(trlan_magnitude);
- #else
- cerr << "EigValuesTRLAN is not checked, because TRLAN was not installed." << endl;
- break;
- #endif
- }
- else
- {
- eig = new EVArnoldi(false, maxiterations, mindelta);
- }
- NICE::Vector eigvalues_dense;
- NICE::Matrix eigvect_dense;
- NICE::Vector eigvalues_sparse;
- NICE::Matrix eigvect_sparse;
- GMStandard Tg(T);
- eig->getEigenvalues(Tg, eigvalues_dense, eigvect_dense, k);
- GMSparse Ts(T);
- eig->getEigenvalues(Ts, eigvalues_sparse, eigvect_sparse, k);
- // test property
- NICE::EuclidianDistance<double> eucliddist;
- for (uint i = 0 ; i < k ; i++)
- {
- NICE::Vector v_dense = eigvect_dense.getColumn(i);
- double lambda_dense = eigvalues_dense[i];
- NICE::Vector Tv_dense;
- Tv_dense.multiply(T, v_dense);
- NICE::Vector lv_dense = v_dense;
- lv_dense *= lambda_dense;
- double err_dense = eucliddist(Tv_dense, lv_dense);
- // check whether the eigenvector definition holds
- NICE::Vector v_sparse = eigvect_sparse.getColumn(i);
- double lambda_sparse = eigvalues_sparse[i];
- NICE::Vector Tv_sparse;
- Tv_sparse.multiply(T, v_sparse);
- NICE::Vector lv_sparse = v_sparse;
- lv_sparse *= lambda_sparse;
- double err_sparse = eucliddist(Tv_sparse, lv_sparse);
- // cerr << "||Av - lambda v|| (dense) = " << err_dense << endl;
- // cerr << "||Av - lambda v|| (sparse) = " << err_sparse << endl;
- // use relative errors instead of absolute errors
- err_sparse /= Tv_sparse.normL2();
- err_dense /= Tv_dense.normL2();
-
- CPPUNIT_ASSERT_DOUBLES_EQUAL_NOT_NAN(0.0,err_dense,1e-2);
- CPPUNIT_ASSERT_DOUBLES_EQUAL_NOT_NAN(0.0,err_sparse,1e-2);
- }
- }
- }
|