TestEigenValue.cpp 3.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128
  1. /**
  2. * @file TestEigenValue.cpp
  3. * @brief TestEigenValue
  4. * @author Michael Koch
  5. * @date Di Aug 4 2009
  6. */
  7. #include "TestEigenValue.h"
  8. #include <string>
  9. #include "core/basics/cppunitex.h"
  10. #include "core/basics/numerictools.h"
  11. #include "core/vector/Distance.h"
  12. #include "core/algebra/EigValues.h"
  13. #include "core/algebra/EigValuesTRLAN.h"
  14. #include "core/algebra/GenericMatrix.h"
  15. #include "core/algebra/GMStandard.h"
  16. using namespace std;
  17. using namespace NICE;
  18. CPPUNIT_TEST_SUITE_REGISTRATION(TestEigenValue);
  19. void TestEigenValue::setUp()
  20. {
  21. }
  22. void TestEigenValue::tearDown()
  23. {
  24. }
  25. void TestEigenValue::TestEigenValueComputation()
  26. {
  27. // size of the matrix
  28. uint rows = 100;
  29. uint cols = rows;
  30. // number of eigenvalues used
  31. uint k = 10;
  32. uint maxiterations = 200;
  33. double mindelta = 1e-8;
  34. double sparse_prob = 0.3;
  35. int trlan_magnitude = 1;
  36. NICE::Matrix T(rows, cols, 0.0);
  37. // use a fixed seed, its a test case
  38. srand48(0);
  39. // generate random symmetric matrix
  40. for (uint i = 0 ; i < rows ; i++)
  41. for (uint j = i ; j < cols ; j++)
  42. {
  43. if (sparse_prob != 0.0)
  44. if (drand48() < sparse_prob)
  45. continue;
  46. T(i, j) = drand48();
  47. T(j, i) = T(i, j);
  48. }
  49. // create a positive definite matrix
  50. T = T*T;
  51. EigValues *eig;
  52. for (int trlan = 0;trlan <= 1;trlan++) //this is creepy but funny
  53. {
  54. if (trlan) //this is creepy but saves lot of code
  55. {
  56. #ifdef NICE_USELIB_TRLAN
  57. eig = new EigValuesTRLAN(trlan_magnitude);
  58. #else
  59. cerr << "EigValuesTRLAN is not checked, because TRLAN was not installed." << endl;
  60. break;
  61. #endif
  62. }
  63. else
  64. {
  65. eig = new EVArnoldi(false, maxiterations, mindelta);
  66. }
  67. NICE::Vector eigvalues_dense;
  68. NICE::Matrix eigvect_dense;
  69. NICE::Vector eigvalues_sparse;
  70. NICE::Matrix eigvect_sparse;
  71. GMStandard Tg(T);
  72. eig->getEigenvalues(Tg, eigvalues_dense, eigvect_dense, k);
  73. GMSparse Ts(T);
  74. eig->getEigenvalues(Ts, eigvalues_sparse, eigvect_sparse, k);
  75. // test property
  76. NICE::EuclidianDistance<double> eucliddist;
  77. for (uint i = 0 ; i < k ; i++)
  78. {
  79. NICE::Vector v_dense = eigvect_dense.getColumn(i);
  80. double lambda_dense = eigvalues_dense[i];
  81. NICE::Vector Tv_dense;
  82. Tv_dense.multiply(T, v_dense);
  83. NICE::Vector lv_dense = v_dense;
  84. lv_dense *= lambda_dense;
  85. double err_dense = eucliddist(Tv_dense, lv_dense);
  86. // check whether the eigenvector definition holds
  87. NICE::Vector v_sparse = eigvect_sparse.getColumn(i);
  88. double lambda_sparse = eigvalues_sparse[i];
  89. NICE::Vector Tv_sparse;
  90. Tv_sparse.multiply(T, v_sparse);
  91. NICE::Vector lv_sparse = v_sparse;
  92. lv_sparse *= lambda_sparse;
  93. double err_sparse = eucliddist(Tv_sparse, lv_sparse);
  94. // cerr << "||Av - lambda v|| (dense) = " << err_dense << endl;
  95. // cerr << "||Av - lambda v|| (sparse) = " << err_sparse << endl;
  96. // use relative errors instead of absolute errors
  97. err_sparse /= Tv_sparse.normL2();
  98. err_dense /= Tv_dense.normL2();
  99. CPPUNIT_ASSERT_DOUBLES_EQUAL_NOT_NAN(0.0,err_dense,1e-2);
  100. CPPUNIT_ASSERT_DOUBLES_EQUAL_NOT_NAN(0.0,err_sparse,1e-2);
  101. }
  102. }
  103. }