MatFileIO.cpp 17 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660
  1. /**
  2. * @file MatFileIO.cpp
  3. * @brief Read and write mat-files
  4. * @author Paul Bodesheim
  5. * @date 06-01-2012 (dd-mm-yyyy)
  6. */
  7. #include "MatFileIO.h"
  8. #ifdef NICE_USELIB_MATIO
  9. namespace NICE {
  10. //------------------------------------------------------
  11. // several constructors and destructors
  12. //------------------------------------------------------
  13. // Default constructor
  14. MatFileIO::MatFileIO() { mat = 0; }
  15. // Recommended constructor
  16. MatFileIO::MatFileIO(std::string _filename, const mat_acc mode) {
  17. mat = Mat_Open(_filename.c_str(),mode);
  18. if (mat == NULL && mode == MAT_ACC_RDONLY) {
  19. fthrow(Exception, "MatFileIO::MatFileIO(const char * _filename, int mode): mat-file does not exist");
  20. }
  21. }
  22. // Default destructor
  23. MatFileIO::~MatFileIO() {}
  24. //------------------------------------------------------
  25. // count number of stored variables
  26. //------------------------------------------------------
  27. int MatFileIO::getNumberOfVariables() {
  28. Mat_Rewind(mat); // get back to first variable
  29. int count = 0;
  30. matvar_t * matvar = Mat_VarReadNextInfo(mat);
  31. while (matvar != NULL) {
  32. count++;
  33. matvar = Mat_VarReadNextInfo(mat);
  34. }
  35. Mat_VarFree(matvar);
  36. return count;
  37. }
  38. //------------------------------------------------------
  39. // several methods for reading data
  40. //------------------------------------------------------
  41. matvar_t * MatFileIO::getVariableViaName(std::string _name) {
  42. // std::cout << "MatFileIO::getVariableViaName: method entered" << std::endl;
  43. char * cString = new char[256];
  44. // std::cout << "MatFileIO::getVariableViaName: cString init done" << std::endl;
  45. return Mat_VarRead(mat,strcpy(cString,_name.c_str()));
  46. }
  47. void MatFileIO::getSparseVariableViaName(sparse_t & sparseVariable, std::string _name) {
  48. matvar_t * matvar = getVariableViaName(_name);
  49. if (matvar == NULL) {
  50. fthrow(Exception, "MatFileIO::getSparseVariableViaName(sparse_t & sparseVariable, std::string _name): variable with specified name does not exist");
  51. return;
  52. }
  53. if (matvar->class_type != MAT_C_SPARSE) {
  54. fthrow(Exception, "MatFileIO::getSparseVariableViaName(sparse_t & sparseVariable, std::string _name): format of variable is not sparse");
  55. return;
  56. }
  57. sparseVariable = *((sparse_t*)matvar->data);
  58. sparseVariable.data = (double*) sparseVariable.data;
  59. }
  60. void MatFileIO::getFeatureMatrixViaName(std::vector<std::vector<double> > & features, std::string _name, const feature_matrix_order order) {
  61. matvar_t * matvar = getVariableViaName(_name);
  62. if (matvar == NULL) {
  63. fthrow(Exception, "MatFileIO::getFeatureMatrixViaName(char * _name, feature_matrix_order order): variable with specified name does not exist");
  64. return;
  65. }
  66. if (matvar->rank != 2) {
  67. fthrow(Exception, "MatFileIO::getFeatureMatrixViaName(char * _name, feature_matrix_order order): dimension of variable != 2");
  68. return;
  69. }
  70. features.clear();
  71. std::vector<double> currentFeature;
  72. currentFeature.clear();
  73. // case 1: feature vectors in the rows of matrix
  74. if (order == NxD) {
  75. // depending on the class type of data elements, we have to treat several cases and cast the data elements correctly
  76. switch (matvar->data_type) {
  77. case MAT_T_DOUBLE:
  78. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  79. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  80. currentFeature.push_back( ((double*)matvar->data)[matvar->dims[0]*j+i] );
  81. }
  82. features.push_back(currentFeature);
  83. currentFeature.clear();
  84. }
  85. break;
  86. case MAT_T_SINGLE:
  87. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  88. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  89. currentFeature.push_back( ((float*)matvar->data)[matvar->dims[0]*j+i] );
  90. }
  91. features.push_back(currentFeature);
  92. currentFeature.clear();
  93. }
  94. break;
  95. #ifdef HAVE_MAT_INT64_T
  96. case MAT_T_INT64:
  97. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  98. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  99. currentFeature.push_back( ((signed long long*)matvar->data)[matvar->dims[0]*j+i] );
  100. }
  101. features.push_back(currentFeature);
  102. currentFeature.clear();
  103. }
  104. break;
  105. #endif
  106. #ifdef HAVE_MAT_UINT64_T
  107. case MAT_T_UINT64:
  108. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  109. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  110. currentFeature.push_back( ((unsigned long long*)matvar->data)[matvar->dims[0]*j+i] );
  111. }
  112. features.push_back(currentFeature);
  113. currentFeature.clear();
  114. }
  115. break;
  116. #endif
  117. case MAT_T_INT32:
  118. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  119. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  120. currentFeature.push_back( ((signed long*)matvar->data)[matvar->dims[0]*j+i] );
  121. }
  122. features.push_back(currentFeature);
  123. currentFeature.clear();
  124. }
  125. break;
  126. case MAT_T_UINT32:
  127. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  128. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  129. currentFeature.push_back( ((unsigned long*)matvar->data)[matvar->dims[0]*j+i] );
  130. }
  131. features.push_back(currentFeature);
  132. currentFeature.clear();
  133. }
  134. break;
  135. case MAT_T_INT16:
  136. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  137. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  138. currentFeature.push_back( ((signed short*)matvar->data)[matvar->dims[0]*j+i] );
  139. }
  140. features.push_back(currentFeature);
  141. currentFeature.clear();
  142. }
  143. break;
  144. case MAT_T_UINT16:
  145. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  146. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  147. currentFeature.push_back( ((unsigned short*)matvar->data)[matvar->dims[0]*j+i] );
  148. }
  149. features.push_back(currentFeature);
  150. currentFeature.clear();
  151. }
  152. break;
  153. case MAT_T_INT8:
  154. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  155. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  156. currentFeature.push_back( ((signed char*)matvar->data)[matvar->dims[0]*j+i] );
  157. }
  158. features.push_back(currentFeature);
  159. currentFeature.clear();
  160. }
  161. break;
  162. case MAT_T_UINT8:
  163. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  164. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  165. currentFeature.push_back( ((unsigned char*)matvar->data)[matvar->dims[0]*j+i] );
  166. }
  167. features.push_back(currentFeature);
  168. currentFeature.clear();
  169. }
  170. break;
  171. }
  172. // case 2: feature vectors in the columns of matrix
  173. } else if (order == DxN) {
  174. // depending on the class type of data elements, we have to treat several cases and cast the data elements correctly
  175. switch (matvar->data_type) {
  176. case MAT_T_DOUBLE:
  177. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  178. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  179. currentFeature.push_back( ((double*)matvar->data)[matvar->dims[0]*j+i] );
  180. }
  181. features.push_back(currentFeature);
  182. currentFeature.clear();
  183. }
  184. break;
  185. case MAT_T_SINGLE:
  186. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  187. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  188. currentFeature.push_back( ((float*)matvar->data)[matvar->dims[0]*j+i] );
  189. }
  190. features.push_back(currentFeature);
  191. currentFeature.clear();
  192. }
  193. break;
  194. #ifdef HAVE_MAT_INT64_T
  195. case MAT_T_INT64:
  196. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  197. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  198. currentFeature.push_back( ((signed long long*)matvar->data)[matvar->dims[0]*j+i] );
  199. }
  200. features.push_back(currentFeature);
  201. currentFeature.clear();
  202. }
  203. break;
  204. #endif
  205. #ifdef HAVE_MAT_UINT64_T
  206. case MAT_T_UINT64:
  207. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  208. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  209. currentFeature.push_back( ((unsigned long long*)matvar->data)[matvar->dims[0]*j+i] );
  210. }
  211. features.push_back(currentFeature);
  212. currentFeature.clear();
  213. }
  214. break;
  215. #endif
  216. case MAT_T_INT32:
  217. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  218. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  219. currentFeature.push_back( ((signed long*)matvar->data)[matvar->dims[0]*j+i] );
  220. }
  221. features.push_back(currentFeature);
  222. currentFeature.clear();
  223. }
  224. break;
  225. case MAT_T_UINT32:
  226. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  227. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  228. currentFeature.push_back( ((unsigned long*)matvar->data)[matvar->dims[0]*j+i] );
  229. }
  230. features.push_back(currentFeature);
  231. currentFeature.clear();
  232. }
  233. break;
  234. case MAT_T_INT16:
  235. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  236. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  237. currentFeature.push_back( ((signed short*)matvar->data)[matvar->dims[0]*j+i] );
  238. }
  239. features.push_back(currentFeature);
  240. currentFeature.clear();
  241. }
  242. break;
  243. case MAT_T_UINT16:
  244. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  245. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  246. currentFeature.push_back( ((unsigned short*)matvar->data)[matvar->dims[0]*j+i] );
  247. }
  248. features.push_back(currentFeature);
  249. currentFeature.clear();
  250. }
  251. break;
  252. case MAT_T_INT8:
  253. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  254. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  255. currentFeature.push_back( ((signed char*)matvar->data)[matvar->dims[0]*j+i] );
  256. }
  257. features.push_back(currentFeature);
  258. currentFeature.clear();
  259. }
  260. break;
  261. case MAT_T_UINT8:
  262. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  263. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  264. currentFeature.push_back( ((unsigned char*)matvar->data)[matvar->dims[0]*j+i] );
  265. }
  266. features.push_back(currentFeature);
  267. currentFeature.clear();
  268. }
  269. break;
  270. }
  271. } else {
  272. fthrow(Exception, "MatFileIO::getFeatureMatrixViaName(char * _name, feature_matrix_order order): wrong feature_matrix_order specified");
  273. return;
  274. }
  275. }
  276. void MatFileIO::getVectorViaName(NICE::Vector & vec, std::string _name) {
  277. matvar_t * matvar = getVariableViaName(_name);
  278. if (matvar == NULL) {
  279. fthrow(Exception, "MatFileIO::getFeatureMatrixViaName(char * _name, feature_matrix_order order): variable with specified name does not exist");
  280. return;
  281. }
  282. // it can happen that a vector is treated as (N x 1) or (1 x N) matrix with two dimensions
  283. if (matvar->rank > 2 || ( (matvar->rank == 2) && (matvar->dims[0] != 1) && (matvar->dims[1] != 1) ) ) {
  284. fthrow(Exception, "MatFileIO::getFeatureMatrixViaName(char * _name, feature_matrix_order order): dimension of variable > 1");
  285. return;
  286. }
  287. std::vector<double> v;
  288. v.clear();
  289. // vector is stored as a variable with one dimensional
  290. if (matvar->rank == 1) {
  291. switch( matvar->data_type ) {
  292. case MAT_T_DOUBLE:
  293. for ( int i = 0; i < matvar->nbytes/matvar->data_size; i++ ) {
  294. v.push_back( ((double*)matvar->data)[i] );
  295. }
  296. break;
  297. case MAT_T_SINGLE:
  298. for ( int i = 0; i < matvar->nbytes/matvar->data_size; i++ ) {
  299. v.push_back( ((float*)matvar->data)[i] );
  300. }
  301. break;
  302. #ifdef HAVE_MAT_INT64_T
  303. case MAT_T_INT64:
  304. for ( int i = 0; i < matvar->nbytes/matvar->data_size; i++ ) {
  305. v.push_back( ((signed long long*)matvar->data)[i] );
  306. }
  307. break;
  308. #endif
  309. #ifdef HAVE_MAT_UINT64_T
  310. case MAT_T_UINT64:
  311. for ( int i = 0; i < matvar->nbytes/matvar->data_size; i++ ) {
  312. v.push_back( ((unsigned long long*)matvar->data)[i] );
  313. }
  314. break;
  315. #endif
  316. case MAT_T_INT32:
  317. for ( int i = 0; i < matvar->nbytes/matvar->data_size; i++ ) {
  318. v.push_back( ((signed long*)matvar->data)[i] );
  319. }
  320. break;
  321. case MAT_T_UINT32:
  322. for ( int i = 0; i < matvar->nbytes/matvar->data_size; i++ ) {
  323. v.push_back( ((unsigned long*)matvar->data)[i] );
  324. }
  325. break;
  326. case MAT_T_INT16:
  327. for ( int i = 0; i < matvar->nbytes/matvar->data_size; i++ ) {
  328. v.push_back( ((signed short*)matvar->data)[i] );
  329. }
  330. break;
  331. case MAT_T_UINT16:
  332. for ( int i = 0; i < matvar->nbytes/matvar->data_size; i++ ) {
  333. v.push_back( ((unsigned short*)matvar->data)[i] );
  334. }
  335. break;
  336. case MAT_T_INT8:
  337. for ( int i = 0; i < matvar->nbytes/matvar->data_size; i++ ) {
  338. v.push_back( ((signed char*)matvar->data)[i] );
  339. }
  340. break;
  341. case MAT_T_UINT8:
  342. for ( int i = 0; i < matvar->nbytes/matvar->data_size; i++ ) {
  343. v.push_back( ((unsigned char*)matvar->data)[i] );
  344. }
  345. break;
  346. }
  347. // it can happen that a vector is treated as (N x 1) or (1 x N) matrix with two dimensions, here we handle this case
  348. } else {
  349. switch( matvar->data_type ) {
  350. case MAT_T_DOUBLE:
  351. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  352. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  353. v.push_back( ((double*)matvar->data)[matvar->dims[0]*j+i] );
  354. }
  355. }
  356. break;
  357. case MAT_T_SINGLE:
  358. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  359. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  360. v.push_back( ((float*)matvar->data)[matvar->dims[0]*j+i] );
  361. }
  362. }
  363. break;
  364. #ifdef HAVE_MAT_INT64_T
  365. case MAT_T_INT64:
  366. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  367. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  368. v.push_back( ((signed long long*)matvar->data)[matvar->dims[0]*j+i] );
  369. }
  370. }
  371. break;
  372. #endif
  373. #ifdef HAVE_MAT_UINT64_T
  374. case MAT_T_UINT64:
  375. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  376. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  377. v.push_back( ((unsigned long long*)matvar->data)[matvar->dims[0]*j+i] );
  378. }
  379. }
  380. break;
  381. #endif
  382. case MAT_T_INT32:
  383. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  384. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  385. v.push_back( ((signed long*)matvar->data)[matvar->dims[0]*j+i] );
  386. }
  387. }
  388. break;
  389. case MAT_T_UINT32:
  390. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  391. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  392. v.push_back( ((unsigned long*)matvar->data)[matvar->dims[0]*j+i] );
  393. }
  394. }
  395. break;
  396. case MAT_T_INT16:
  397. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  398. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  399. v.push_back( ((signed short*)matvar->data)[matvar->dims[0]*j+i] );
  400. }
  401. }
  402. break;
  403. case MAT_T_UINT16:
  404. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  405. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  406. v.push_back( ((unsigned short*)matvar->data)[matvar->dims[0]*j+i] );
  407. }
  408. }
  409. break;
  410. case MAT_T_INT8:
  411. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  412. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  413. v.push_back( ((signed char*)matvar->data)[matvar->dims[0]*j+i] );
  414. }
  415. }
  416. break;
  417. case MAT_T_UINT8:
  418. for ( int i = 0; i < matvar->dims[0]; i++ ) {
  419. for ( int j = 0; j < matvar->dims[1]; j++ ) {
  420. v.push_back( ((unsigned char*)matvar->data)[matvar->dims[0]*j+i] );
  421. }
  422. }
  423. break;
  424. }
  425. }
  426. vec = NICE::Vector(v);
  427. }
  428. }
  429. #endif