EigValues.cpp 3.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128
  1. /**
  2. * @file EigValues.cpp
  3. * @brief EigValues Class
  4. * @author Michael Koch
  5. * @date 08/19/2008
  6. */
  7. #include <iostream>
  8. #include "EigValues.h"
  9. #define DEBUG_ARNOLDI
  10. using namespace NICE;
  11. using namespace std;
  12. void
  13. EVArnoldi::getEigenvalues ( const GenericMatrix & data, Vector & eigenvalues,
  14. Matrix & eigenvectors, uint k )
  15. {
  16. /////////////////////////////////////
  17. ///////// check input arguments /////
  18. /////////////////////////////////////
  19. if ( data.rows () != data.cols () )
  20. {
  21. throw ( "EVArnoldi: matrix has to be quadratic" );
  22. }
  23. if ( k <= 0 )
  24. {
  25. throw ( "EVArnoldi: please use k>0." );
  26. }
  27. // did we specify more eigenvalues than the matrix can actually have?
  28. if ( k <= data.rows() )
  29. {
  30. throw ( "EVArnoldi: specified k is larger then dimension of matrix! Aborting..." );
  31. }
  32. //////////////////////////////////////
  33. ///////// initialize variables ///////
  34. //////////////////////////////////////
  35. if ( verbose )
  36. cerr << "Initialize Matrices";
  37. uint n = data.cols ();
  38. NICE::Matrix rmatrix ( n, k, 0 ); //=eigenvectors
  39. NICE::Matrix qmatrix ( n, k, 0 ); //saves data =eigenvectors
  40. eigenvalues.resize ( k );
  41. NICE::Vector q ( n );
  42. NICE::Vector r ( n );
  43. if ( verbose )
  44. cerr << "Random Initialization" << endl;
  45. //random initialisation
  46. for ( uint i = 0; i < k; i++ )
  47. for ( uint j = 0; j < n; j++ )
  48. rmatrix ( j, i ) = drand48 ();
  49. // rmatrix ( j, i ) = 0.5;
  50. //TODO the random initialization might help, but it is bad for reproducibility :(
  51. ////////////////////////////////////
  52. ///////// start computation ///////
  53. ////////////////////////////////////
  54. //reduceddim
  55. double delta = 1.0;
  56. uint iteration = 0;
  57. while ( delta > mindelta && iteration < maxiterations )
  58. {
  59. //replace Vector rold by matrix rold to check for convergence of all eigenvectors
  60. //NICE::Vector rold ( rmatrix.getColumn ( k - 1 ) );
  61. NICE::Matrix rold(rmatrix);
  62. // meta-comment: i is an index for the iteration, j is an index for the basis
  63. // element (1 <= j <= k)
  64. for ( uint reduceddim = 0; reduceddim < k; reduceddim++ )
  65. {
  66. // -> get r^i_j from R matrix
  67. q = rmatrix.getColumn ( reduceddim );
  68. // q^i_j = r^i_j / ||r^i_j||
  69. q.normalizeL2 ();
  70. // -> store in Q matrix
  71. qmatrix.getColumnRef ( reduceddim ) = q;
  72. // this line copies a vector with external memory!
  73. // changing currentcol leads to a change in the R matrix!!
  74. Vector currentCol = rmatrix.getColumnRef ( reduceddim );
  75. // r^{i+1}_j = A * q^i_j ( r^i_j is overwritten by r^{i+1}_j )
  76. data.multiply ( currentCol, q );
  77. // for all j: r^{i+1}_j -= q^i_j * < q^i_j, r^{i+1}_j >
  78. for ( uint j = 0; j < reduceddim; j++ )
  79. rmatrix.getColumnRef ( reduceddim ) -=
  80. qmatrix.getColumn ( j ) *
  81. ( qmatrix.getColumn ( j ).
  82. scalarProduct ( rmatrix.getColumn ( reduceddim ) ) );
  83. }
  84. //convergence stuff (replaced by checking all eigenvectors instead of a single one
  85. //NICE::Vector diff = rold - rmatrix.getColumn ( k - 1 );
  86. //delta = diff.normL2 ();
  87. NICE::Vector tmpDiff;
  88. double norm_tmpDiff;
  89. delta = 0.0;
  90. for ( uint j = 0; j < k; j++ )
  91. {
  92. tmpDiff = rold.getColumn(j) - rmatrix.getColumn(j);
  93. norm_tmpDiff = tmpDiff.normL2();
  94. if (norm_tmpDiff > delta)
  95. delta = norm_tmpDiff;
  96. }
  97. iteration++;
  98. if ( verbose )
  99. cerr << "EVArnoldi: [" << iteration << "] delta=" << delta << endl;
  100. }
  101. eigenvectors = rmatrix;
  102. for ( uint i = 0; i < k; i++ )
  103. {
  104. NICE::Vector tmp;
  105. eigenvectors.getColumnRef ( i ).normalizeL2 ();
  106. data.multiply ( tmp, eigenvectors.getColumn ( i ) );
  107. eigenvalues[i] = tmp.scalarProduct ( eigenvectors.getColumn ( i ) );
  108. }
  109. }