123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263 |
- #ifndef ALGORITHMS_H
- #define ALGORITHMS_H
- /*
- * NICE-Core - efficient algebra and computer vision methods
- * - libbasicvector - A simple vector library
- * See file License for license information.
- */
- #include "core/vector/ippwrapper.h"
- #include "core/vector/VectorT.h"
- #include "core/vector/MatrixT.h"
- #include "core/vector/RowMatrixT.h"
- #include <cmath>
- namespace NICE {
- /**
- * @brief Calculate mean of VectorT \c v
- * @param v vector
- * @return mean of vector
- */
- template<class T>
- inline T mean(const VectorT<T> &v);
- /**
- * @brief Calculate determinate of MatrixT \c A
- * @param A matrix
- * @return determinate of matrix A
- */
- template<class T>
- inline T det(const MatrixT<T> &A);
- /**
- * @brief Compute cholesky decomposition of MatrixT \c A (A = G*G^T), with
- * G being an lower triangle matrix.
- * If the flag \c resetUpperTriangle is set to false, only the lower triangle of G is set,
- * without setting the upper triangle to zero !
- * @param A matrix
- * @param G square root of A
- */
- template<class T>
- void choleskyDecomp ( const MatrixT<T> & A, MatrixT<T> & G, bool resetUpperTriangle = true );
- /**
- * @brief Compute the inverse matrix of a matrix given by its square root \c G (lower triangle)
- * @param G square root of A
- * @param Ainv matrix
- */
- template<class T>
- void choleskyInvert ( const MatrixT<T> & G, MatrixT<T> & Ainv );
- /**
- * @brief Compute cholesky decomposition of MatrixT \c A (A = G*G^T), with
- * G being an lower triangle matrix.
- * If the flag \c resetUpperTriangle is set to false, only the lower triangle of G is set,
- * without setting the upper triangle to zero !
- * This method uses Lapack (LinAl) if available and should be used for large matrices (e.g. dim=1000).
- * @param A matrix
- * @param G square root of A
- */
- void choleskyDecompLargeScale ( const Matrix & A, Matrix & G, bool resetUpperTriangle = true );
- /**
- * @brief Compute the inverse matrix of a matrix given by its square root \c G (lower triangle)
- * This method uses Lapack (LinAl) if available and should be used for large matrices (e.g. dim=1000).
- * @param G square root of A
- * @param Ainv matrix
- */
- void choleskyInvertLargeScale ( const Matrix & G, Matrix & Ainv );
- /**
- * @brief Solves a linear equation system using the cholesky decomposition
- * of the coefficient matrix.
- * @param G square root of A (lower triangle)
- * @param b right hand side of the equation system
- * @param x solution of A x = b
- */
- template<class T>
- void choleskySolve ( const MatrixT<T> & G, const VectorT<T> & b, VectorT<T> & x );
- /**
- * @brief Solves a linear equation system using the cholesky decomposition
- * of the coefficient matrix.
- * This method uses Lapack (LinAl) if available and should be used for large matrices (e.g. dim=1000).
- * @param G square root of A (lower triangle)
- * @param b right hand side of the equation system
- * @param x solution of A x = b
- */
- void choleskySolveLargeScale ( const Matrix & G, const Vector & b, Vector & x );
- /**
- * @brief Solves multiple linear equation systems using the cholesky decomposition
- * of the coefficient matrix.
- * This method uses Lapack (LinAl) if available and should be used for large matrices (e.g. dim=1000).
- * @param G square root of A (lower triangle)
- * @param B right hand side of the equation system AND solution of the system
- */
- void choleskySolveMatrixLargeScale ( const Matrix & G, Matrix & B );
- /**
- * @brief Solves multiple linear equation systems with a triangular coefficient matrix
- * @param G coefficient matrix (lower triangular!!)
- * @param B right hand side of the equation system AND solution of the system
- * @param transposedMatrix if set to true the system G^T B = X is solved instead of G B = X
- */
- void triangleSolveMatrix ( const Matrix & G, Matrix & B, bool transposedMatrix = false );
- /**
- * @brief Solves a linear equation system with a triangular coefficient matrix
- * @param G coefficient matrix (lower triangular!!)
- * @param b right hand side of the equation system
- * @param x solution of the system
- * @param transposedMatrix if set to true the system G^T B = X is solved instead of G B = X
- */
- void triangleSolve ( const Matrix & G, const Vector & x, Vector & b, bool transposedMatrix = false );
- /**
- * @brief Compute the determinant of a triangular matrix
- * @param G matrix
- * @param ignoreZero ignore all zero elements on the diagonal
- */
- template<class T>
- double triangleMatrixDet ( const MatrixT<T> & G, bool ignoreZero = false );
- /**
- * @brief Compute the logarithm of the determinant of a triangular matrix.
- * Computing the logarithm is often numerically more robust.
- * @param G matrix
- * @param ignoreZero ignore all zero elements on the diagonal
- */
- template<class T>
- double triangleMatrixLogDet ( const MatrixT<T> & G, bool ignoreZero = false );
- /**
- * @brief Calculate determinate of MatrixT \c A
- * @param A matrix
- * @return determinate of matrix A
- */
- template<class T>
- inline T det(const RowMatrixT<T> &A);
- /**
- * @brief Calculate natural logarithm of VectorT \c v in place.
- * @param v source and destination of vector
- */
- template<class T>
- inline void lnIP(VectorT<T> &v);
- /**
- * @brief Calculate natural logarithm of VectorT \c v.
- * @param v source vector
- * @param buffer pointer to destination vector
- * @return pointer to VectorT with logarithmic values.
- */
- template<class T>
- inline VectorT<T> *ln(const VectorT<T> &v, VectorT<T> *buffer=NULL);
- /**
- * @brief Create a 1D Gauss function
- * @param sigma if sigma>0 determine Gauss function with standard derivation \c sigma
- * @param buffer pointer to destination vector (size of detination vector is automatically calculated if buffer pointer is NULL or size of buffer pointer is 0)
- * @return pointer to VectorT with Gauss function
- */
- template<class T>
- inline VectorT<T> *createGaussFunc(float sigma, VectorT<T> *buffer=NULL);
- /**
- * @brief solve linear equation given by the matrix A and the right-vector b: A*x = b.
- * @param A matrix
- * @param b vector
- * @param x solution vector
- */
- template<class T>
- inline void solveLinearEquationQR(const MatrixT<T> &A, const VectorT<T> &b, VectorT<T> &x);
- /**
- * @brief solve linear equation given by the matrix A and the right-vector b: A*x = b.
- * @param A matrix
- * @param b vector
- * @param x solution vector
- */
- template<class T>
- inline void solveLinearEquationQR(const RowMatrixT<T> &A, const VectorT<T> &b, VectorT<T> &x);
- /**
- * @brief solve Minimum Description Length based on greedy algorithm
- * @param C quadratic matrix
- * @param h solution vector
- */
- template<class T>
- inline void solveMDLgreedy(const MatrixT<T> &C, VectorT<T> &h);
- /**
- * Invert a square matrix.
- */
- template<class T>
- MatrixT<T> invert(const MatrixT<T>& w);
- /**
- * Invert a 3x3 upper triangle matrix (inplace).
- * @note There is no check if the matrix is invertable.
- */
- template<class T>
- void invert3x3UpperTriangle(MatrixT<T>& w);
- /**
- * Invert a 3x3 lower triangle matrix (inplace).
- * @note There is no check if the matrix is invertable.
- */
- template<class T>
- void invert3x3LowerTriangle(MatrixT<T>& w);
- /**
- * Compute the angle (in radian, -M_PI to M_PI) between two vectors.
- * If one of the vectors is zero, the result will be M_PI/2.0.
- */
- inline double angleBetweenVectors(
- const Vector& v1, const Vector& v2) {
- const double denominator = v1.normL2() * v2.normL2();
- // if one of the vectors is zero, they are orthogonal -> return PI/2
- if (isZero(denominator, 1e-16)) {
- return M_PI / 2.0;
- }
- const double arg = v1.scalarProduct(v2) / denominator;
- // allow for values slightly larger than 1.0 or slightly smaller than -1.0
- if (arg >= 1.0 && arg < 1.0 + 1e-10) {
- return 0.0;
- } else if (arg <= -1.0 && arg > -1.0 - 1e-10) {
- return -M_PI;
- } else {
- return acos(arg);
- }
- }
- /**
- * Compute the angle (in radian, -M_PI/2 to M_PI/2) between
- * two vectors ignoring the direction.
- */
- inline double angleBetweenVectorsIgnoringDirection(
- const Vector& v1, const Vector& v2) {
- double a = fabs(v1.scalarProduct(v2) / (v1.normL2() * v2.normL2()));
- if (a > 1.0)
- a = 1.0;
- return acos(a);
- }
- /**
- * Compute the absolute angle (in radian, 0 to M_PI/2) between
- * two vectors ignoring the direction.
- */
- inline double absoluteAngleBetweenVectorsIgnoringDirection(
- const Vector& v1, const Vector& v2) {
- return fabs(angleBetweenVectorsIgnoringDirection(v1, v2));
- }
- } // namespace
- //#ifdef __GNUC__
- #include <core/vector/Algorithms.tcc>
- //#endif
- #endif // ALGORITHMS_H
|