|
@@ -11,10 +11,10 @@ myLabels = [1; 2; 2];
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%% boolean
|
|
|
%interested in time measurements?
|
|
|
-b_verboseTime = true;
|
|
|
+b_verboseTime = false;
|
|
|
|
|
|
%interested in outputs?
|
|
|
-b_verbose = true;
|
|
|
+b_verbose = false;
|
|
|
|
|
|
% important for plotting!
|
|
|
b_uncertaintyPredictionForClassification ...
|
|
@@ -26,7 +26,7 @@ b_ils_verbose = false;
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
|
%% integer
|
|
|
i_nrOfEigenvaluesToConsiderForVarApprox ...
|
|
|
- = 2;
|
|
|
+ = 0;
|
|
|
i_num_bins = 100; % default
|
|
|
i_ils_max_iterations = 1000; % default
|
|
|
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
|
@@ -45,14 +45,14 @@ d_parameter_upper_bound = 1.0;
|
|
|
s_ils_method = 'CG'; % default
|
|
|
|
|
|
% options: 'none', 'greedy', 'downhillsimplex'
|
|
|
-s_optimization_method = 'none';
|
|
|
+s_optimization_method = 'downhillsimplex';
|
|
|
|
|
|
-% options: 'identity', 'abs', 'absexp'
|
|
|
+% options: 'identity', 'exp', 'absexp'
|
|
|
% with settings above, this equals 'identity'
|
|
|
-s_transform = 'absexp';
|
|
|
+s_transform = 'identity';
|
|
|
|
|
|
% options: 'exact', 'approximate_fine', 'approximate_rough', and 'none'
|
|
|
-s_varianceApproximation = 'exact';
|
|
|
+s_varianceApproximation = 'approximate_fine';
|
|
|
|
|
|
% init new GPHIKClassifier object
|
|
|
myGPHIKClassifier = ...
|
|
@@ -81,7 +81,7 @@ myGPHIKClassifier = ...
|
|
|
);
|
|
|
|
|
|
%% run train method
|
|
|
-myGPHIKClassifier.train( sparse(myData), myLabels );
|
|
|
+myGPHIKClassifier.train( myData, myLabels );
|
|
|
|
|
|
|
|
|
%% evaluate model on test data
|
|
@@ -95,7 +95,7 @@ scores = zeros(size(myDataTest,1),1);
|
|
|
uncertainties = zeros(size(myDataTest,1),1);
|
|
|
for i=1:size(myDataTest,1)
|
|
|
example = myDataTest(i,:);
|
|
|
- example = sparse( example );
|
|
|
+
|
|
|
[ classNoEst, score, uncertainties(i)] = myGPHIKClassifier.classify( example );
|
|
|
%[ classNoEst, score] = myGPHIKClassifier.classify( example );
|
|
|
scores(i) = score(1);
|