|
@@ -1,854 +0,0 @@
|
|
|
-#include <math.h>
|
|
|
-#include <matrix.h>
|
|
|
-#include "mex.h"
|
|
|
-#include "classHandleMtoC.h"
|
|
|
-
|
|
|
-// NICE-core includes
|
|
|
-#include <core/basics/Config.h>
|
|
|
-#include <core/basics/Timer.h>
|
|
|
-#include <core/vector/MatrixT.h>
|
|
|
-#include <core/vector/VectorT.h>
|
|
|
-
|
|
|
-// gp-hik-core includes
|
|
|
-#include "gp-hik-core/GPHIKClassifier.h"
|
|
|
-
|
|
|
-using namespace std; //C basics
|
|
|
-using namespace NICE; // nice-core
|
|
|
-
|
|
|
-/* Pass analyze_sparse a pointer to a sparse mxArray. A sparse mxArray
|
|
|
- only stores its nonzero elements. The values of the nonzero elements
|
|
|
- are stored in the pr and pi arrays. The tricky part of analyzing
|
|
|
- sparse mxArray's is figuring out the indices where the nonzero
|
|
|
- elements are stored. (See the mxSetIr and mxSetJc reference pages
|
|
|
- for details. */
|
|
|
-std::vector< NICE::SparseVector * > convertSparseMatrixToNice(const mxArray *array_ptr)
|
|
|
-{
|
|
|
- double *pr;//, *pi;
|
|
|
- mwIndex *ir, *jc;
|
|
|
- mwSize col, total=0;
|
|
|
- mwIndex starting_row_index, stopping_row_index, current_row_index;
|
|
|
- mwSize i_numExamples, i_numDim;
|
|
|
-
|
|
|
- /* Get the starting positions of all four data arrays. */
|
|
|
- pr = mxGetPr(array_ptr);
|
|
|
-// pi = mxGetPi(array_ptr);
|
|
|
- ir = mxGetIr(array_ptr);
|
|
|
- jc = mxGetJc(array_ptr);
|
|
|
-
|
|
|
- // dimenions of the matrix -> feature dimension and number of examples
|
|
|
- i_numExamples = mxGetM(array_ptr);
|
|
|
- i_numDim = mxGetN(array_ptr);
|
|
|
-
|
|
|
- // initialize output variable
|
|
|
- std::vector< NICE::SparseVector * > sparseMatrix;
|
|
|
- sparseMatrix.resize ( i_numExamples );
|
|
|
-
|
|
|
- for ( std::vector< NICE::SparseVector * >::iterator matIt = sparseMatrix.begin();
|
|
|
- matIt != sparseMatrix.end(); matIt++)
|
|
|
- {
|
|
|
- *matIt = new NICE::SparseVector( i_numDim );
|
|
|
- }
|
|
|
-
|
|
|
- // now copy the data
|
|
|
- for (col=0; col < i_numDim; col++)
|
|
|
- {
|
|
|
- starting_row_index = jc[col];
|
|
|
- stopping_row_index = jc[col+1];
|
|
|
-
|
|
|
- // empty column?
|
|
|
- if (starting_row_index == stopping_row_index)
|
|
|
- continue;
|
|
|
- else
|
|
|
- {
|
|
|
- for ( current_row_index = starting_row_index;
|
|
|
- current_row_index < stopping_row_index;
|
|
|
- current_row_index++)
|
|
|
- {
|
|
|
- //note: no complex data supported her
|
|
|
- sparseMatrix[ ir[current_row_index] ]->insert( std::pair<int, double>( col, pr[total++] ) );
|
|
|
- } // for-loop
|
|
|
-
|
|
|
- }
|
|
|
- } // for-loop over columns
|
|
|
-
|
|
|
- return sparseMatrix;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-// b_adaptIndexMtoC: if true, dim k will be inserted as k, not as k-1 (which would be the default for M->C)
|
|
|
-NICE::SparseVector convertSparseVectorToNice(const mxArray* array_ptr, const bool & b_adaptIndexMtoC = false )
|
|
|
-{
|
|
|
- double *pr, *pi;
|
|
|
- mwIndex *ir, *jc;
|
|
|
- mwSize col, total=0;
|
|
|
- mwIndex starting_row_index, stopping_row_index, current_row_index;
|
|
|
- mwSize dimy, dimx;
|
|
|
-
|
|
|
- /* Get the starting positions of all four data arrays. */
|
|
|
- pr = mxGetPr(array_ptr);
|
|
|
- pi = mxGetPi(array_ptr);
|
|
|
- ir = mxGetIr(array_ptr);
|
|
|
- jc = mxGetJc(array_ptr);
|
|
|
-
|
|
|
- // dimenions of the matrix -> feature dimension and number of examples
|
|
|
- dimy = mxGetM(array_ptr);
|
|
|
- dimx = mxGetN(array_ptr);
|
|
|
-
|
|
|
- double* ptr = mxGetPr(array_ptr);
|
|
|
-
|
|
|
- if(dimx != 1 && dimy != 1)
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Vector expected");
|
|
|
-
|
|
|
-
|
|
|
- NICE::SparseVector svec( std::max(dimx, dimy) );
|
|
|
-
|
|
|
-
|
|
|
- if ( dimx > 1)
|
|
|
- {
|
|
|
- for ( mwSize row=0; row < dimx; row++)
|
|
|
- {
|
|
|
- // empty column?
|
|
|
- if (jc[row] == jc[row+1])
|
|
|
- {
|
|
|
- continue;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- //note: no complex data supported her
|
|
|
- double value ( pr[total++] );
|
|
|
- if ( b_adaptIndexMtoC )
|
|
|
- svec.insert( std::pair<int, double>( row+1, value ) );
|
|
|
- else
|
|
|
- svec.insert( std::pair<int, double>( row, value ) );
|
|
|
- }
|
|
|
- } // for loop over cols
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- mwSize numNonZero = jc[1]-jc[0];
|
|
|
-
|
|
|
- for ( mwSize colNonZero=0; colNonZero < numNonZero; colNonZero++)
|
|
|
- {
|
|
|
- //note: no complex data supported her
|
|
|
- double value ( pr[total++] );
|
|
|
- if ( b_adaptIndexMtoC )
|
|
|
- svec.insert( std::pair<int, double>( ir[colNonZero]+1, value ) );
|
|
|
- else
|
|
|
- svec.insert( std::pair<int, double>( ir[colNonZero], value ) );
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- return svec;
|
|
|
-}
|
|
|
-
|
|
|
-// b_adaptIndexCtoM: if true, dim k will be inserted as k, not as k+1 (which would be the default for C->M)
|
|
|
-mxArray* convertSparseVectorFromNice( const NICE::SparseVector & scores, const bool & b_adaptIndexCtoM = false)
|
|
|
-{
|
|
|
- mxArray * matlabSparseVec = mxCreateSparse( scores.getDim() /*m*/, 1/*n*/, scores.size()/*nzmax*/, mxREAL);
|
|
|
-
|
|
|
- // To make the returned sparse mxArray useful, you must initialize the pr, ir, jc, and (if it exists) pi arrays.
|
|
|
- // mxCreateSparse allocates space for:
|
|
|
- //
|
|
|
- // A pr array of length nzmax.
|
|
|
- // A pi array of length nzmax, but only if ComplexFlag is mxCOMPLEX in C (1 in Fortran).
|
|
|
- // An ir array of length nzmax.
|
|
|
- // A jc array of length n+1.
|
|
|
-
|
|
|
- double* prPtr = mxGetPr(matlabSparseVec);
|
|
|
- mwIndex * ir = mxGetIr( matlabSparseVec );
|
|
|
-
|
|
|
- mwIndex * jc = mxGetJc( matlabSparseVec );
|
|
|
- jc[1] = scores.size(); jc[0] = 0;
|
|
|
-
|
|
|
-
|
|
|
- mwSize cnt = 0;
|
|
|
-
|
|
|
- for ( NICE::SparseVector::const_iterator myIt = scores.begin(); myIt != scores.end(); myIt++, cnt++ )
|
|
|
- {
|
|
|
- // set index
|
|
|
- if ( b_adaptIndexCtoM )
|
|
|
- ir[cnt] = myIt->first-1;
|
|
|
- else
|
|
|
- ir[cnt] = myIt->first;
|
|
|
-
|
|
|
- // set value
|
|
|
- prPtr[cnt] = myIt->second;
|
|
|
- }
|
|
|
-
|
|
|
- return matlabSparseVec;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-mxArray* convertMatrixFromNice(NICE::Matrix & niceMatrix)
|
|
|
-{
|
|
|
- mxArray *matlabMatrix = mxCreateDoubleMatrix(niceMatrix.rows(),niceMatrix.cols(),mxREAL);
|
|
|
- double* matlabMatrixPtr = mxGetPr(matlabMatrix);
|
|
|
-
|
|
|
- for(int i=0; i<niceMatrix.rows(); i++)
|
|
|
- {
|
|
|
- for(int j=0; j<niceMatrix.cols(); j++)
|
|
|
- {
|
|
|
- matlabMatrixPtr[i + j*niceMatrix.rows()] = niceMatrix(i,j);
|
|
|
- }
|
|
|
- }
|
|
|
- return matlabMatrix;
|
|
|
-}
|
|
|
-
|
|
|
-NICE::Matrix convertMatrixToNice(const mxArray* matlabMatrix)
|
|
|
-{
|
|
|
- //todo: do not assume double
|
|
|
-
|
|
|
- const mwSize *dims;
|
|
|
- int dimx, dimy, numdims;
|
|
|
- //figure out dimensions
|
|
|
- dims = mxGetDimensions(matlabMatrix);
|
|
|
- numdims = mxGetNumberOfDimensions(matlabMatrix);
|
|
|
- dimy = (int)dims[0]; dimx = (int)dims[1];
|
|
|
- double* ptr = mxGetPr(matlabMatrix);
|
|
|
-
|
|
|
- NICE::Matrix niceMatrix(ptr, dimy, dimx, NICE::Matrix::external);
|
|
|
-
|
|
|
- return niceMatrix;
|
|
|
-}
|
|
|
-
|
|
|
-mxArray* convertVectorFromNice(NICE::Vector & niceVector)
|
|
|
-{
|
|
|
- //cout << "start convertVectorFromNice" << endl;
|
|
|
- mxArray *matlabVector = mxCreateDoubleMatrix(niceVector.size(), 1, mxREAL);
|
|
|
- double* matlabVectorPtr = mxGetPr(matlabVector);
|
|
|
-
|
|
|
- for(int i=0;i<niceVector.size(); i++)
|
|
|
- {
|
|
|
- matlabVectorPtr[i] = niceVector[i];
|
|
|
- }
|
|
|
- return matlabVector;
|
|
|
-}
|
|
|
-
|
|
|
-NICE::Vector convertVectorToNice(const mxArray* matlabMatrix)
|
|
|
-{
|
|
|
- //todo: do not assume double
|
|
|
-
|
|
|
- const mwSize *dims;
|
|
|
- int dimx, dimy, numdims;
|
|
|
- //figure out dimensions
|
|
|
- dims = mxGetDimensions(matlabMatrix);
|
|
|
- numdims = mxGetNumberOfDimensions(matlabMatrix);
|
|
|
- dimy = (int)dims[0]; dimx = (int)dims[1];
|
|
|
- double* ptr = mxGetPr(matlabMatrix);
|
|
|
-
|
|
|
- if(dimx != 1 && dimy != 1)
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Vector expected");
|
|
|
-
|
|
|
- int dim = max(dimx, dimy);
|
|
|
-
|
|
|
- NICE::Vector niceVector(dim, 0.0);
|
|
|
-
|
|
|
- for(int i=0;i<dim;i++)
|
|
|
- {
|
|
|
- niceVector(i) = ptr[i];
|
|
|
- }
|
|
|
-
|
|
|
- return niceVector;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-std::string convertMatlabToString(const mxArray *matlabString)
|
|
|
-{
|
|
|
- if(!mxIsChar(matlabString))
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Expected string");
|
|
|
-
|
|
|
- char *cstring = mxArrayToString(matlabString);
|
|
|
- std::string s(cstring);
|
|
|
- mxFree(cstring);
|
|
|
- return s;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-int convertMatlabToInt32(const mxArray *matlabInt32)
|
|
|
-{
|
|
|
- if(!mxIsInt32(matlabInt32))
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Expected int32");
|
|
|
-
|
|
|
- int* ptr = (int*)mxGetData(matlabInt32);
|
|
|
- return ptr[0];
|
|
|
-}
|
|
|
-
|
|
|
-double convertMatlabToDouble(const mxArray *matlabDouble)
|
|
|
-{
|
|
|
- if(!mxIsDouble(matlabDouble))
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Expected double");
|
|
|
-
|
|
|
- double* ptr = (double*)mxGetData(matlabDouble);
|
|
|
- return ptr[0];
|
|
|
-}
|
|
|
-
|
|
|
-NICE::Config parseParameters(const mxArray *prhs[], int nrhs)
|
|
|
-{
|
|
|
- NICE::Config conf;
|
|
|
-
|
|
|
- // if first argument is the filename of an existing config file,
|
|
|
- // read the config accordingly
|
|
|
-
|
|
|
- int i_start ( 0 );
|
|
|
- std::string variable = convertMatlabToString(prhs[i_start]);
|
|
|
- if(variable == "conf")
|
|
|
- {
|
|
|
- conf = NICE::Config ( convertMatlabToString( prhs[i_start+1] ) );
|
|
|
- i_start = i_start+2;
|
|
|
- }
|
|
|
-
|
|
|
- // now run over all given parameter specifications
|
|
|
- // and add them to the config
|
|
|
- for( int i=i_start; i < nrhs; i+=2 )
|
|
|
- {
|
|
|
- std::string variable = convertMatlabToString(prhs[i]);
|
|
|
- if(variable == "ils_verbose")
|
|
|
- {
|
|
|
- string value = convertMatlabToString(prhs[i+1]);
|
|
|
- if(value != "true" && value != "false")
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'ils_verbose\'. \'true\' or \'false\' expected.");
|
|
|
- if(value == "true")
|
|
|
- conf.sB("GPHIKClassifier", variable, true);
|
|
|
- else
|
|
|
- conf.sB("GPHIKClassifier", variable, false);
|
|
|
- }
|
|
|
-
|
|
|
- if(variable == "ils_max_iterations")
|
|
|
- {
|
|
|
- int value = convertMatlabToInt32(prhs[i+1]);
|
|
|
- if(value < 1)
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Expected parameter value larger than 0 for \'ils_max_iterations\'.");
|
|
|
- conf.sI("GPHIKClassifier", variable, value);
|
|
|
- }
|
|
|
-
|
|
|
- if(variable == "ils_method")
|
|
|
- {
|
|
|
- string value = convertMatlabToString(prhs[i+1]);
|
|
|
- if(value != "CG" && value != "CGL" && value != "SYMMLQ" && value != "MINRES")
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'ils_method\'. \'CG\', \'CGL\', \'SYMMLQ\' or \'MINRES\' expected.");
|
|
|
- conf.sS("GPHIKClassifier", variable, value);
|
|
|
- }
|
|
|
-
|
|
|
- if(variable == "ils_min_delta")
|
|
|
- {
|
|
|
- double value = convertMatlabToDouble(prhs[i+1]);
|
|
|
- if(value < 0.0)
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Expected parameter value larger than 0 for \'ils_min_delta\'.");
|
|
|
- conf.sD("GPHIKClassifier", variable, value);
|
|
|
- }
|
|
|
-
|
|
|
- if(variable == "ils_min_residual")
|
|
|
- {
|
|
|
- double value = convertMatlabToDouble(prhs[i+1]);
|
|
|
- if(value < 0.0)
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Expected parameter value larger than 0 for \'ils_min_residual\'.");
|
|
|
- conf.sD("GPHIKClassifier", variable, value);
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- if(variable == "optimization_method")
|
|
|
- {
|
|
|
- string value = convertMatlabToString(prhs[i+1]);
|
|
|
- if(value != "greedy" && value != "downhillsimplex" && value != "none")
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'optimization_method\'. \'greedy\', \'downhillsimplex\' or \'none\' expected.");
|
|
|
- conf.sS("GPHIKClassifier", variable, value);
|
|
|
- }
|
|
|
-
|
|
|
- if(variable == "use_quantization")
|
|
|
- {
|
|
|
- string value = convertMatlabToString(prhs[i+1]);
|
|
|
- if(value != "true" && value != "false")
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'use_quantization\'. \'true\' or \'false\' expected.");
|
|
|
- if(value == "true")
|
|
|
- conf.sB("GPHIKClassifier", variable, true);
|
|
|
- else
|
|
|
- conf.sB("GPHIKClassifier", variable, false);
|
|
|
- }
|
|
|
-
|
|
|
- if(variable == "num_bins")
|
|
|
- {
|
|
|
- int value = convertMatlabToInt32(prhs[i+1]);
|
|
|
- if(value < 1)
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Expected parameter value larger than 0 for \'num_bins\'.");
|
|
|
- conf.sI("GPHIKClassifier", variable, value);
|
|
|
- }
|
|
|
-
|
|
|
- if(variable == "transform")
|
|
|
- {
|
|
|
- string value = convertMatlabToString(prhs[i+1]);
|
|
|
- if(value != "absexp" && value != "exp" && value != "MKL" && value != "WeightedDim")
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'transform\'. \'absexp\', \'exp\' , \'MKL\' or \'WeightedDim\' expected.");
|
|
|
- conf.sS("GPHIKClassifier", variable, value);
|
|
|
- }
|
|
|
-
|
|
|
- if(variable == "verboseTime")
|
|
|
- {
|
|
|
- string value = convertMatlabToString(prhs[i+1]);
|
|
|
- if(value != "true" && value != "false")
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'verboseTime\'. \'true\' or \'false\' expected.");
|
|
|
- if(value == "true")
|
|
|
- conf.sB("GPHIKClassifier", variable, true);
|
|
|
- else
|
|
|
- conf.sB("GPHIKClassifier", variable, false);
|
|
|
- }
|
|
|
-
|
|
|
- if(variable == "verbose")
|
|
|
- {
|
|
|
- string value = convertMatlabToString(prhs[i+1]);
|
|
|
- if(value != "true" && value != "false")
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'verbose\'. \'true\' or \'false\' expected.");
|
|
|
- if(value == "true")
|
|
|
- conf.sB("GPHIKClassifier", variable, true);
|
|
|
- else
|
|
|
- conf.sB("GPHIKClassifier", variable, false);
|
|
|
- }
|
|
|
-
|
|
|
- if(variable == "noise")
|
|
|
- {
|
|
|
- double value = convertMatlabToDouble(prhs[i+1]);
|
|
|
- if(value < 0.0)
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value larger than 0 for \'noise\'.");
|
|
|
- conf.sD("GPHIKClassifier", variable, value);
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- if(variable == "optimize_noise")
|
|
|
- {
|
|
|
- string value = convertMatlabToString(prhs[i+1]);
|
|
|
- if(value != "true" && value != "false")
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'optimize_noise\'. \'true\' or \'false\' expected.");
|
|
|
- if(value == "true")
|
|
|
- conf.sB("GPHIKClassifier", variable, true);
|
|
|
- else
|
|
|
- conf.sB("GPHIKClassifier", variable, false);
|
|
|
- }
|
|
|
-
|
|
|
- if(variable == "varianceApproximation")
|
|
|
- {
|
|
|
- string value = convertMatlabToString(prhs[i+1]);
|
|
|
- if(value != "approximate_fine" && value != "approximate_rough" && value != "exact" && value != "none")
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'varianceApproximation\'. \'approximate_fine\', \'approximate_rough\', \'none\' or \'exact\' expected.");
|
|
|
- conf.sS("GPHIKClassifier", variable, value);
|
|
|
- }
|
|
|
-
|
|
|
- if(variable == "nrOfEigenvaluesToConsiderForVarApprox")
|
|
|
- {
|
|
|
- double value = convertMatlabToDouble(prhs[i+1]);
|
|
|
- conf.sI("GPHIKClassifier", variable, (int) value);
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- return conf;
|
|
|
-}
|
|
|
-
|
|
|
-// MAIN MATLAB FUNCTION
|
|
|
-void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
|
|
|
-{
|
|
|
- // get the command string specifying what to do
|
|
|
- if (nrhs < 1)
|
|
|
- mexErrMsgTxt("No commands and options passed... Aborting!");
|
|
|
-
|
|
|
- if( !mxIsChar( prhs[0] ) )
|
|
|
- mexErrMsgTxt("First argument needs to be the command, ie.e, the class method to call... Aborting!");
|
|
|
-
|
|
|
- std::string cmd = convertMatlabToString( prhs[0] );
|
|
|
-
|
|
|
-
|
|
|
- // create object
|
|
|
- if ( !strcmp("new", cmd.c_str() ) )
|
|
|
- {
|
|
|
- // check output variable
|
|
|
- if (nlhs != 1)
|
|
|
- mexErrMsgTxt("New: One output expected.");
|
|
|
-
|
|
|
- // read config settings
|
|
|
- NICE::Config conf = parseParameters(prhs+1,nrhs-1);
|
|
|
-
|
|
|
- // create class instance
|
|
|
- NICE::GPHIKClassifier * classifier = new NICE::GPHIKClassifier ( &conf );
|
|
|
-
|
|
|
-
|
|
|
- // handle to the C++ instance
|
|
|
- plhs[0] = convertPtr2Mat<NICE::GPHIKClassifier>( classifier );
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- // in all other cases, there should be a second input,
|
|
|
- // which the be the class instance handle
|
|
|
- if (nrhs < 2)
|
|
|
- mexErrMsgTxt("Second input should be a class instance handle.");
|
|
|
-
|
|
|
- // delete object
|
|
|
- if ( !strcmp("delete", cmd.c_str() ) )
|
|
|
- {
|
|
|
- // Destroy the C++ object
|
|
|
- destroyObject<NICE::GPHIKClassifier>(prhs[1]);
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- // get the class instance pointer from the second input
|
|
|
- // every following function needs the classifier object
|
|
|
- NICE::GPHIKClassifier * classifier = convertMat2Ptr<NICE::GPHIKClassifier>(prhs[1]);
|
|
|
-
|
|
|
-
|
|
|
- ////////////////////////////////////////
|
|
|
- // Check which class method to call //
|
|
|
- ////////////////////////////////////////
|
|
|
-
|
|
|
-
|
|
|
- // standard train - assumes initialized object
|
|
|
- if (!strcmp("train", cmd.c_str() ))
|
|
|
- {
|
|
|
- // Check parameters
|
|
|
- if (nlhs < 0 || nrhs < 4)
|
|
|
- {
|
|
|
- mexErrMsgTxt("Train: Unexpected arguments.");
|
|
|
- }
|
|
|
-
|
|
|
- //------------- read the data --------------
|
|
|
-
|
|
|
- std::vector< NICE::SparseVector *> examplesTrain;
|
|
|
- NICE::Vector yMultiTrain;
|
|
|
-
|
|
|
- if ( mxIsSparse( prhs[2] ) )
|
|
|
- {
|
|
|
- examplesTrain = convertSparseMatrixToNice( prhs[2] );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- NICE::Matrix dataTrain;
|
|
|
- dataTrain = convertMatrixToNice(prhs[2]);
|
|
|
-
|
|
|
- //----------------- convert data to sparse data structures ---------
|
|
|
- examplesTrain.resize( dataTrain.rows() );
|
|
|
-
|
|
|
-
|
|
|
- std::vector< NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin();
|
|
|
- for (int i = 0; i < (int)dataTrain.rows(); i++, exTrainIt++)
|
|
|
- {
|
|
|
- *exTrainIt = new NICE::SparseVector( dataTrain.getRow(i) );
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- yMultiTrain = convertVectorToNice(prhs[3]);
|
|
|
-
|
|
|
-// std::cerr << " DATA AFTER CONVERSION: \n" << std::endl;
|
|
|
-// int lineIdx(0);
|
|
|
-// for ( std::vector< NICE::SparseVector *>::const_iterator exTrainIt = examplesTrain.begin();
|
|
|
-// exTrainIt != examplesTrain.end(); exTrainIt++, lineIdx++)
|
|
|
-// {
|
|
|
-// std::cerr << "\n lineIdx: " << lineIdx << std::endl;
|
|
|
-// (*exTrainIt)->store( std::cerr );
|
|
|
-//
|
|
|
-// }
|
|
|
-
|
|
|
- // test assumption
|
|
|
- {
|
|
|
- if( yMultiTrain.Min() < 0)
|
|
|
- mexErrMsgIdAndTxt("mexnice:error","Class labels smaller 0 are not allowed");
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- //----------------- train our classifier -------------
|
|
|
- classifier->train ( examplesTrain , yMultiTrain );
|
|
|
-
|
|
|
- //----------------- clean up -------------
|
|
|
- for(int i=0;i<examplesTrain.size();i++)
|
|
|
- delete examplesTrain[i];
|
|
|
-
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // Classify
|
|
|
- if ( !strcmp("classify", cmd.c_str() ) )
|
|
|
- {
|
|
|
- // Check parameters
|
|
|
- if ( (nlhs < 0) || (nrhs < 2) )
|
|
|
- {
|
|
|
- mexErrMsgTxt("Test: Unexpected arguments.");
|
|
|
- }
|
|
|
-
|
|
|
- //------------- read the data --------------
|
|
|
-
|
|
|
- int result;
|
|
|
- NICE::SparseVector scores;
|
|
|
- double uncertainty;
|
|
|
-
|
|
|
- if ( mxIsSparse( prhs[2] ) )
|
|
|
- {
|
|
|
- NICE::SparseVector * example;
|
|
|
- example = new NICE::SparseVector ( convertSparseVectorToNice( prhs[2] ) );
|
|
|
- classifier->classify ( example, result, scores, uncertainty );
|
|
|
-
|
|
|
- //----------------- clean up -------------
|
|
|
- delete example;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- NICE::Vector * example;
|
|
|
- example = new NICE::Vector ( convertVectorToNice(prhs[2]) );
|
|
|
- classifier->classify ( example, result, scores, uncertainty );
|
|
|
-
|
|
|
- //----------------- clean up -------------
|
|
|
- delete example;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- // output
|
|
|
- plhs[0] = mxCreateDoubleScalar( result );
|
|
|
-
|
|
|
-
|
|
|
- if(nlhs >= 2)
|
|
|
- {
|
|
|
- plhs[1] = convertSparseVectorFromNice( scores, true /*b_adaptIndex*/);
|
|
|
- }
|
|
|
- if(nlhs >= 3)
|
|
|
- {
|
|
|
- plhs[2] = mxCreateDoubleScalar( uncertainty );
|
|
|
- }
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- // Classify
|
|
|
- if ( !strcmp("uncertainty", cmd.c_str() ) )
|
|
|
- {
|
|
|
- // Check parameters
|
|
|
- if ( (nlhs < 0) || (nrhs < 2) )
|
|
|
- {
|
|
|
- mexErrMsgTxt("Test: Unexpected arguments.");
|
|
|
- }
|
|
|
-
|
|
|
- double uncertainty;
|
|
|
-
|
|
|
- //------------- read the data --------------
|
|
|
-
|
|
|
- if ( mxIsSparse( prhs[2] ) )
|
|
|
- {
|
|
|
- NICE::SparseVector * example;
|
|
|
- example = new NICE::SparseVector ( convertSparseVectorToNice( prhs[2] ) );
|
|
|
- classifier->predictUncertainty( example, uncertainty );
|
|
|
-
|
|
|
- //----------------- clean up -------------
|
|
|
- delete example;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- NICE::Vector * example;
|
|
|
- example = new NICE::Vector ( convertVectorToNice(prhs[2]) );
|
|
|
- classifier->predictUncertainty( example, uncertainty );
|
|
|
-
|
|
|
- //----------------- clean up -------------
|
|
|
- delete example;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- // output
|
|
|
- plhs[0] = mxCreateDoubleScalar( uncertainty );
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // Test
|
|
|
- if ( !strcmp("test", cmd.c_str() ) )
|
|
|
- {
|
|
|
- // Check parameters
|
|
|
- if (nlhs < 0 || nrhs < 4)
|
|
|
- mexErrMsgTxt("Test: Unexpected arguments.");
|
|
|
- //------------- read the data --------------
|
|
|
-
|
|
|
-
|
|
|
- bool dataIsSparse ( mxIsSparse( prhs[2] ) );
|
|
|
-
|
|
|
- std::vector< NICE::SparseVector *> dataTest_sparse;
|
|
|
- NICE::Matrix dataTest_dense;
|
|
|
-
|
|
|
- if ( dataIsSparse )
|
|
|
- {
|
|
|
- dataTest_sparse = convertSparseMatrixToNice( prhs[2] );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- dataTest_dense = convertMatrixToNice(prhs[2]);
|
|
|
- }
|
|
|
-
|
|
|
- NICE::Vector yMultiTest;
|
|
|
- yMultiTest = convertVectorToNice(prhs[3]);
|
|
|
-
|
|
|
-
|
|
|
- // ------------------------------------------
|
|
|
- // ------------- PREPARATION --------------
|
|
|
- // ------------------------------------------
|
|
|
-
|
|
|
- // determine classes known during training and corresponding mapping
|
|
|
- // thereby allow for non-continous class labels
|
|
|
- std::set<int> classesKnownTraining = classifier->getKnownClassNumbers();
|
|
|
-
|
|
|
- int noClassesKnownTraining ( classesKnownTraining.size() );
|
|
|
- std::map<int,int> mapClNoToIdxTrain;
|
|
|
- std::set<int>::const_iterator clTrIt = classesKnownTraining.begin();
|
|
|
- for ( int i=0; i < noClassesKnownTraining; i++, clTrIt++ )
|
|
|
- mapClNoToIdxTrain.insert ( std::pair<int,int> ( *clTrIt, i ) );
|
|
|
-
|
|
|
- // determine classes known during testing and corresponding mapping
|
|
|
- // thereby allow for non-continous class labels
|
|
|
- std::set<int> classesKnownTest;
|
|
|
- classesKnownTest.clear();
|
|
|
-
|
|
|
-
|
|
|
- // determine which classes we have in our label vector
|
|
|
- // -> MATLAB: myClasses = unique(y);
|
|
|
- for ( NICE::Vector::const_iterator it = yMultiTest.begin(); it != yMultiTest.end(); it++ )
|
|
|
- {
|
|
|
- if ( classesKnownTest.find ( *it ) == classesKnownTest.end() )
|
|
|
- {
|
|
|
- classesKnownTest.insert ( *it );
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- int noClassesKnownTest ( classesKnownTest.size() );
|
|
|
- std::map<int,int> mapClNoToIdxTest;
|
|
|
- std::set<int>::const_iterator clTestIt = classesKnownTest.begin();
|
|
|
- for ( int i=0; i < noClassesKnownTest; i++, clTestIt++ )
|
|
|
- mapClNoToIdxTest.insert ( std::pair<int,int> ( *clTestIt, i ) );
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- int i_numTestSamples;
|
|
|
-
|
|
|
- if ( dataIsSparse )
|
|
|
- i_numTestSamples = dataTest_sparse.size();
|
|
|
- else
|
|
|
- i_numTestSamples = (int) dataTest_dense.rows();
|
|
|
-
|
|
|
- NICE::Matrix confusionMatrix( noClassesKnownTraining, noClassesKnownTest, 0.0);
|
|
|
- NICE::Matrix scores( i_numTestSamples, noClassesKnownTraining, 0.0);
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- // ------------------------------------------
|
|
|
- // ------------- CLASSIFICATION --------------
|
|
|
- // ------------------------------------------
|
|
|
-
|
|
|
- NICE::Timer t;
|
|
|
- double testTime (0.0);
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- for (int i = 0; i < i_numTestSamples; i++)
|
|
|
- {
|
|
|
- //----------------- convert data to sparse data structures ---------
|
|
|
-
|
|
|
-
|
|
|
- int result;
|
|
|
- NICE::SparseVector exampleScoresSparse;
|
|
|
-
|
|
|
- if ( dataIsSparse )
|
|
|
- {
|
|
|
- // and classify
|
|
|
- t.start();
|
|
|
- classifier->classify( dataTest_sparse[ i ], result, exampleScoresSparse );
|
|
|
- t.stop();
|
|
|
- testTime += t.getLast();
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- NICE::Vector example ( dataTest_dense.getRow(i) );
|
|
|
- // and classify
|
|
|
- t.start();
|
|
|
- classifier->classify( &example, result, exampleScoresSparse );
|
|
|
- t.stop();
|
|
|
- testTime += t.getLast();
|
|
|
- }
|
|
|
-
|
|
|
- confusionMatrix( mapClNoToIdxTrain.find(result)->second, mapClNoToIdxTest.find(yMultiTest[i])->second ) += 1.0;
|
|
|
- int scoreCnt ( 0 );
|
|
|
- for ( NICE::SparseVector::const_iterator scoreIt = exampleScoresSparse.begin(); scoreIt != exampleScoresSparse.end(); scoreIt++, scoreCnt++ )
|
|
|
- scores(i,scoreCnt) = scoreIt->second;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- std::cerr << "Time for testing: " << testTime << std::endl;
|
|
|
-
|
|
|
- // clean up
|
|
|
- if ( dataIsSparse )
|
|
|
- {
|
|
|
- for ( std::vector<NICE::SparseVector *>::iterator it = dataTest_sparse.begin(); it != dataTest_sparse.end(); it++)
|
|
|
- delete *it;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
- confusionMatrix.normalizeColumnsL1();
|
|
|
- //std::cerr << confusionMatrix << std::endl;
|
|
|
-
|
|
|
- double recRate = confusionMatrix.trace()/confusionMatrix.rows();
|
|
|
- //std::cerr << "average recognition rate: " << recRate << std::endl;
|
|
|
-
|
|
|
-
|
|
|
- plhs[0] = mxCreateDoubleScalar( recRate );
|
|
|
-
|
|
|
- if(nlhs >= 2)
|
|
|
- plhs[1] = convertMatrixFromNice(confusionMatrix);
|
|
|
- if(nlhs >= 3)
|
|
|
- plhs[2] = convertMatrixFromNice(scores);
|
|
|
-
|
|
|
-
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- // store the classifier
|
|
|
- if ( !strcmp("store", cmd.c_str() ) || !strcmp("save", cmd.c_str() ) )
|
|
|
- {
|
|
|
- // Check parameters
|
|
|
- if ( nrhs < 3 )
|
|
|
- mexErrMsgTxt("store: no destination given.");
|
|
|
-
|
|
|
- std::string s_destination = convertMatlabToString( prhs[2] );
|
|
|
-
|
|
|
- std::filebuf fb;
|
|
|
- fb.open ( s_destination.c_str(), ios::out );
|
|
|
- std::ostream os(&fb);
|
|
|
- //
|
|
|
- classifier->store( os );
|
|
|
- //
|
|
|
- fb.close();
|
|
|
-
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
- // load classifier from external file
|
|
|
- if ( !strcmp("restore", cmd.c_str() ) || !strcmp("load", cmd.c_str() ) )
|
|
|
- {
|
|
|
- // Check parameters
|
|
|
- if ( nrhs < 3 )
|
|
|
- mexErrMsgTxt("restore: no destination given.");
|
|
|
-
|
|
|
- std::string s_destination = convertMatlabToString( prhs[2] );
|
|
|
-
|
|
|
- std::cerr << " aim at restoring the classifier from " << s_destination << std::endl;
|
|
|
-
|
|
|
- std::filebuf fbIn;
|
|
|
- fbIn.open ( s_destination.c_str(), ios::in );
|
|
|
- std::istream is (&fbIn);
|
|
|
- //
|
|
|
- classifier->restore( is );
|
|
|
- //
|
|
|
- fbIn.close();
|
|
|
-
|
|
|
- return;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // Got here, so command not recognized
|
|
|
-
|
|
|
- std::string errorMsg (cmd.c_str() );
|
|
|
- errorMsg += " -- command not recognized.";
|
|
|
- mexErrMsgTxt( errorMsg.c_str() );
|
|
|
-
|
|
|
-}
|