Bladeren bron

regression interface to matlab corrected, minor plotting modifications

Alexander Freytag 11 jaren geleden
bovenliggende
commit
5a6ae9c926
2 gewijzigde bestanden met toevoegingen van 4 en 4 verwijderingen
  1. 1 1
      matlab/GPHIKRegressionMex.cpp
  2. 3 3
      matlab/plot1dExampleRegression.m

+ 1 - 1
matlab/GPHIKRegressionMex.cpp

@@ -58,7 +58,7 @@ NICE::Config parseParametersGPHIKRegression(const mxArray *prhs[], int nrhs)
     // READ STANDARD BOOLEAN VARIABLES
     // READ STANDARD BOOLEAN VARIABLES
     /////////////////////////////////////////
     /////////////////////////////////////////
     if( (variable == "verboseTime") || (variable == "verbose") ||
     if( (variable == "verboseTime") || (variable == "verbose") ||
-        (variable == "optimize_noise") || (variable == "uncertaintyPredictionForClassification") ||
+        (variable == "optimize_noise") || (variable == "uncertaintyPredictionForRegression") ||
         (variable == "use_quantization") || (variable == "ils_verbose")
         (variable == "use_quantization") || (variable == "ils_verbose")
       )
       )
     {
     {

+ 3 - 3
matlab/plot1dExampleRegression.m

@@ -1,14 +1,14 @@
 myData = [ 0.1; 0.3; 0.8];
 myData = [ 0.1; 0.3; 0.8];
 % create l1-normalized 'histograms'
 % create l1-normalized 'histograms'
-myData = cat(2,myData , 1-myData)';
-myValues = [0.3, 0.0, 1.4];
+myData = cat(2,myData , 1-myData);
+myValues = [0.3; 0.0; 1.4];
 
 
 
 
 % init new GPHIKRegression object
 % init new GPHIKRegression object
 myGPHIKRegression = GPHIKRegression ( 'verbose', 'false', ...
 myGPHIKRegression = GPHIKRegression ( 'verbose', 'false', ...
     'optimization_method', 'none', 'varianceApproximation', 'approximate_fine',...
     'optimization_method', 'none', 'varianceApproximation', 'approximate_fine',...
     'nrOfEigenvaluesToConsiderForVarApprox',2,...
     'nrOfEigenvaluesToConsiderForVarApprox',2,...
-    'uncertaintyPredictionForClassification', true ...
+    'uncertaintyPredictionForRegression', true ...
     );
     );
 
 
 % run train method
 % run train method