|
@@ -161,14 +161,12 @@ void GPHIKClassifier::classify ( const SparseVector * example, int & result, Sp
|
|
|
|
|
|
scores.clear();
|
|
|
|
|
|
- int classno = gphyper->classify ( *example, scores );
|
|
|
+ result = gphyper->classify ( *example, scores );
|
|
|
|
|
|
if ( scores.size() == 0 ) {
|
|
|
fthrow(Exception, "Zero scores, something is likely to be wrong here: svec.size() = " << example->size() );
|
|
|
}
|
|
|
|
|
|
- result = scores.maxElement();
|
|
|
-
|
|
|
if (uncertaintyPredictionForClassification)
|
|
|
{
|
|
|
if (varianceApproximation != NONE)
|
|
@@ -195,14 +193,12 @@ void GPHIKClassifier::classify ( const NICE::Vector * example, int & result, Sp
|
|
|
|
|
|
scores.clear();
|
|
|
|
|
|
- int classno = gphyper->classify ( *example, scores );
|
|
|
+ result = gphyper->classify ( *example, scores );
|
|
|
|
|
|
if ( scores.size() == 0 ) {
|
|
|
fthrow(Exception, "Zero scores, something is likely to be wrong here: svec.size() = " << example->size() );
|
|
|
}
|
|
|
-
|
|
|
- result = scores.maxElement();
|
|
|
-
|
|
|
+
|
|
|
if (uncertaintyPredictionForClassification)
|
|
|
{
|
|
|
if (varianceApproximation != NONE)
|