|
@@ -1,16 +1,25 @@
|
|
-myData = [ 0.1; 0.3; 0.8];
|
|
|
|
|
|
+% BRIEF: Small visualization script using the GPHIKRegression
|
|
|
|
+% author: Alexander Freytag
|
|
|
|
+% date: 20-01-2014 (dd-mm-yyyy)
|
|
|
|
+
|
|
|
|
+myData = [ 0.1; 0.3; 0.7; 0.8];
|
|
% create l1-normalized 'histograms'
|
|
% create l1-normalized 'histograms'
|
|
myData = cat(2,myData , 1-myData);
|
|
myData = cat(2,myData , 1-myData);
|
|
-myValues = [0.3; 0.0; 1.4];
|
|
|
|
|
|
+myValues = [0.3; 0.0; 1.0; 1.4];
|
|
|
|
|
|
|
|
|
|
% init new GPHIKRegression object
|
|
% init new GPHIKRegression object
|
|
myGPHIKRegression = GPHIKRegression ( 'verbose', 'false', ...
|
|
myGPHIKRegression = GPHIKRegression ( 'verbose', 'false', ...
|
|
- 'optimization_method', 'none', 'varianceApproximation', 'approximate_fine',...
|
|
|
|
- 'nrOfEigenvaluesToConsiderForVarApprox',2,...
|
|
|
|
- 'uncertaintyPredictionForRegression', true ...
|
|
|
|
|
|
+ 'optimization_method', 'none', ...
|
|
|
|
+ 'varianceApproximation', 'approximate_fine',...
|
|
|
|
+ 'nrOfEigenvaluesToConsiderForVarApprox',1,...
|
|
|
|
+ 'uncertaintyPredictionForRegression', true, ...
|
|
|
|
+ 'noise', 0.000001 ...
|
|
);
|
|
);
|
|
|
|
|
|
|
|
+ %'varianceApproximation', 'approximate_fine',...
|
|
|
|
+ %'varianceApproximation', 'exact',...
|
|
|
|
+
|
|
% run train method
|
|
% run train method
|
|
myGPHIKRegression.train( myData, myValues );
|
|
myGPHIKRegression.train( myData, myValues );
|
|
|
|
|
|
@@ -27,8 +36,10 @@ for i=1:size(myDataTest,1)
|
|
end
|
|
end
|
|
|
|
|
|
|
|
|
|
|
|
+% create figure and set title
|
|
|
|
+classificationFig = figure;
|
|
|
|
+set ( classificationFig, 'name', 'Regression with GPHIK');
|
|
|
|
|
|
-figure;
|
|
|
|
hold on;
|
|
hold on;
|
|
|
|
|
|
%#initialize x array
|
|
%#initialize x array
|
|
@@ -44,11 +55,38 @@ uncUpper=scores+uncertainties;
|
|
X=[x,fliplr(x)];
|
|
X=[x,fliplr(x)];
|
|
%# concatenate y-values accordingly
|
|
%# concatenate y-values accordingly
|
|
Y=[uncLower',fliplr(uncUpper')];
|
|
Y=[uncLower',fliplr(uncUpper')];
|
|
-%#plot filled area
|
|
|
|
|
|
+%#plot filled area for predictive variance ( aka regression uncertainty )
|
|
fill(X,Y,'y');
|
|
fill(X,Y,'y');
|
|
|
|
|
|
-plot ( x,scores,'rx');
|
|
|
|
-
|
|
|
|
|
|
+% plot mean values
|
|
|
|
+plot ( x,scores, ...
|
|
|
|
+ 'LineStyle', '--', ...
|
|
|
|
+ 'LineWidth', 2, ...
|
|
|
|
+ 'Color', 'r', ...
|
|
|
|
+ 'Marker','none', ...
|
|
|
|
+ 'MarkerSize',1, ...
|
|
|
|
+ 'MarkerEdgeColor','r', ...
|
|
|
|
+ 'MarkerFaceColor',[0.5,0.5,0.5] ...
|
|
|
|
+ );
|
|
|
|
+
|
|
|
|
+% plot training data
|
|
|
|
+plot ( myData(:,1), myValues, ...
|
|
|
|
+ 'LineStyle', 'none', ...
|
|
|
|
+ 'LineWidth', 3, ...
|
|
|
|
+ 'Marker','o', ...
|
|
|
|
+ 'MarkerSize',6, ...
|
|
|
|
+ 'MarkerEdgeColor','b', ...
|
|
|
|
+ 'MarkerFaceColor',[0.5,0.5,0.5] ...
|
|
|
|
+ );
|
|
|
|
+
|
|
|
|
+xlabel('1st Input dimension');
|
|
|
|
+ylabel('Regression score');
|
|
|
|
+
|
|
|
|
+i_fontSizeAxis = 16;
|
|
|
|
+set(get(gca,'XLabel'), 'FontSize', i_fontSizeAxis);
|
|
|
|
+set(get(gca,'YLabel'), 'FontSize', i_fontSizeAxis);
|
|
|
|
+
|
|
|
|
+
|
|
|
|
|
|
% clean up and delete object
|
|
% clean up and delete object
|
|
myGPHIKRegression.delete();
|
|
myGPHIKRegression.delete();
|