myData = [ 0.2; 0.8]; % create l1-normalized 'histograms' myData = cat(2,myData , 1-myData)'; myValues = [1,2]; % init new GPHIKRegression object myGPHIKRegression = GPHIKRegression ( 'verbose', 'false', ... 'optimization_method', 'none', 'varianceApproximation', 'approximate_fine',... 'nrOfEigenvaluesToConsiderForVarApprox',2,... 'uncertaintyPredictionForClassification', true ... ); % run train method myGPHIKRegression.train( myData, myValues ); myDataTest = 0:0.01:1; % create l1-normalized 'histograms' myDataTest = cat(1, myDataTest, 1-myDataTest)'; scores = zeros(size(myDataTest,1),1); uncertainties = zeros(size(myDataTest,1),1); for i=1:size(myDataTest,1) example = myDataTest(i,:); [ scores(i), uncertainties(i)] = myGPHIKRegression.estimate( example ); end figure; hold on; %#initialize x array x=0:0.01:1; %#create first curve uncLower=scores-uncertainties; %#create second curve uncUpper=scores+uncertainties; %#create polygon-like x values for plotting X=[x,fliplr(x)]; %# concatenate y-values accordingly Y=[uncLower',fliplr(uncUpper')]; %#plot filled area fill(X,Y,'y'); plot ( x,scores,'rx'); % clean up and delete object myGPHIKRegression.delete(); clear ( 'myGPHIKRegression' );