[train0] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run0.train classselection_train = "*" examples_train = seq * 100 [test0] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run0.test classselection_test = "*" examples_test = seq * 50 [train1] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run1.train classselection_train = "*" examples_train = seq * 100 [test1] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run1.test classselection_test = "*" examples_test = seq * 50 [train2] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run2.train classselection_train = "*" examples_train = seq * 100 [test2] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run2.test classselection_test = "*" examples_test = seq * 50 [train3] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run3.train classselection_train = "*" examples_train = seq * 100 [test3] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run3.test classselection_test = "*" examples_test = seq * 50 [train4] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run4.train classselection_train = "*" examples_train = seq * 100 [test4] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run4.test classselection_test = "*" examples_test = seq * 50 [train5] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run5.train classselection_train = "*" examples_train = seq * 100 [test5] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run5.test classselection_test = "*" examples_test = seq * 50 [train6] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run6.train classselection_train = "*" examples_train = seq * 100 [test6] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run6.test classselection_test = "*" examples_test = seq * 50 [train7] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run7.train classselection_train = "*" examples_train = seq * 100 [test7] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run7.test classselection_test = "*" examples_test = seq * 50 [train8] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run8.train classselection_train = "*" examples_train = seq * 100 [test8] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run8.test classselection_test = "*" examples_test = seq * 50 [train9] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run9.train classselection_train = "*" examples_train = seq * 100 [test9] dataset = /home/luetz/data/images/15Scenes/imagesScaled/run9.test classselection_test = "*" examples_test = seq * 50 [cache] #root = "/home/rodner/3rdparty/imagenetBOF/niceFeatures/" root = "/home/luetz/data/feature-storage/15Scenes/niceFeatures/" [GP_IL] trainExPerClass = 1 num_runs = 10 do_classification = true incrementalAddSize = 3 nrOfIncrements = 30 [main] # extension of all files in the cache ext = ".feat" queryStrategy = gpPredVar [GPHIKClassifier] noise = 0.0000001 # no uncertainty for standard classification uncertaintyPredictionForClassification = false #--define the uncertainty prediction scheme-- # standatd predictive variance #uncertaintyPrediction = pred_variance # use the heuristic as proposed by Kapoor et al. #uncertaintyPrediction = heuristic # no classification uncertainty at all? #uncertaintyPrediction = none #--define the computation scheme for the predictive variance, if needed-- #if we do not need any predictive variance for this experiment #varianceApproximation = none # predictive variance approximation useful for sparse features - really fast #varianceApproximation = approximate_rough # predictive variance approximation with eigenvectors (finer) varianceApproximation = approximate_fine nrOfEigenvaluesToConsiderForVarApprox = 2 #exact computation of predictive variance #varianceApproximation = exact #--define the optimization method-- optimization_method = none #optimization_method = downhillsimplex parameter_lower_bound = 1.0 parameter_upper_bound = 1.0 #--stuff for the IterativeLinearSolver-- #ils_verbose = true