#[HIKGP] [GPHIKClassifier] #optimization_method = "downhillsimplex" optimization_method = "none" parameter_upper_bound = 5.0 ils_max_iterations = 500 ils_verbose = true noise = 10.0 verbose = true ils_min_residual = 1e-2 learn_balanced = true [main] positive_class = 1 # whether to use eriks folder (only works on dionysos) imageNetLocal = false # standard setting with one negative example for each category nneg = 50 # with 20 iterations # This standard config should lead to ... classification performance # With quantization we get: 0.891481 (with only 100 bins :) # Additional quantization #[HIKGP] [GPHIKClassifier] use_quantization = true num_bins = 100 [RegGaussianProcess] noise = 10.0 optimize_parameters = false [Kernel] robust_cholesky = "static" rchol_noise_variance = 10.0