123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854 |
- #include <math.h>
- #include <matrix.h>
- #include "mex.h"
- #include "classHandleMtoC.h"
- // NICE-core includes
- #include <core/basics/Config.h>
- #include <core/basics/Timer.h>
- #include <core/vector/MatrixT.h>
- #include <core/vector/VectorT.h>
- // gp-hik-core includes
- #include "gp-hik-core/GPHIKClassifier.h"
- using namespace std; //C basics
- using namespace NICE; // nice-core
- /* Pass analyze_sparse a pointer to a sparse mxArray. A sparse mxArray
- only stores its nonzero elements. The values of the nonzero elements
- are stored in the pr and pi arrays. The tricky part of analyzing
- sparse mxArray's is figuring out the indices where the nonzero
- elements are stored. (See the mxSetIr and mxSetJc reference pages
- for details. */
- std::vector< NICE::SparseVector * > convertSparseMatrixToNice(const mxArray *array_ptr)
- {
- double *pr;//, *pi;
- mwIndex *ir, *jc;
- mwSize col, total=0;
- mwIndex starting_row_index, stopping_row_index, current_row_index;
- mwSize i_numExamples, i_numDim;
-
- /* Get the starting positions of all four data arrays. */
- pr = mxGetPr(array_ptr);
- // pi = mxGetPi(array_ptr);
- ir = mxGetIr(array_ptr);
- jc = mxGetJc(array_ptr);
-
- // dimenions of the matrix -> feature dimension and number of examples
- i_numExamples = mxGetM(array_ptr);
- i_numDim = mxGetN(array_ptr);
-
- // initialize output variable
- std::vector< NICE::SparseVector * > sparseMatrix;
- sparseMatrix.resize ( i_numExamples );
-
- for ( std::vector< NICE::SparseVector * >::iterator matIt = sparseMatrix.begin();
- matIt != sparseMatrix.end(); matIt++)
- {
- *matIt = new NICE::SparseVector( i_numDim );
- }
-
- // now copy the data
- for (col=0; col < i_numDim; col++)
- {
- starting_row_index = jc[col];
- stopping_row_index = jc[col+1];
-
- // empty column?
- if (starting_row_index == stopping_row_index)
- continue;
- else
- {
- for ( current_row_index = starting_row_index;
- current_row_index < stopping_row_index;
- current_row_index++)
- {
- //note: no complex data supported her
- sparseMatrix[ ir[current_row_index] ]->insert( std::pair<int, double>( col, pr[total++] ) );
- } // for-loop
-
- }
- } // for-loop over columns
-
- return sparseMatrix;
- }
- // b_adaptIndexMtoC: if true, dim k will be inserted as k, not as k-1 (which would be the default for M->C)
- NICE::SparseVector convertSparseVectorToNice(const mxArray* array_ptr, const bool & b_adaptIndexMtoC = false )
- {
- double *pr, *pi;
- mwIndex *ir, *jc;
- mwSize col, total=0;
- mwIndex starting_row_index, stopping_row_index, current_row_index;
- mwSize dimy, dimx;
-
- /* Get the starting positions of all four data arrays. */
- pr = mxGetPr(array_ptr);
- pi = mxGetPi(array_ptr);
- ir = mxGetIr(array_ptr);
- jc = mxGetJc(array_ptr);
-
- // dimenions of the matrix -> feature dimension and number of examples
- dimy = mxGetM(array_ptr);
- dimx = mxGetN(array_ptr);
-
- double* ptr = mxGetPr(array_ptr);
- if(dimx != 1 && dimy != 1)
- mexErrMsgIdAndTxt("mexnice:error","Vector expected");
-
- NICE::SparseVector svec( std::max(dimx, dimy) );
-
-
- if ( dimx > 1)
- {
- for ( mwSize row=0; row < dimx; row++)
- {
- // empty column?
- if (jc[row] == jc[row+1])
- {
- continue;
- }
- else
- {
- //note: no complex data supported her
- double value ( pr[total++] );
- if ( b_adaptIndexMtoC )
- svec.insert( std::pair<int, double>( row+1, value ) );
- else
- svec.insert( std::pair<int, double>( row, value ) );
- }
- } // for loop over cols
- }
- else
- {
- mwSize numNonZero = jc[1]-jc[0];
-
- for ( mwSize colNonZero=0; colNonZero < numNonZero; colNonZero++)
- {
- //note: no complex data supported her
- double value ( pr[total++] );
- if ( b_adaptIndexMtoC )
- svec.insert( std::pair<int, double>( ir[colNonZero]+1, value ) );
- else
- svec.insert( std::pair<int, double>( ir[colNonZero], value ) );
- }
- }
- return svec;
- }
- // b_adaptIndexCtoM: if true, dim k will be inserted as k, not as k+1 (which would be the default for C->M)
- mxArray* convertSparseVectorFromNice( const NICE::SparseVector & scores, const bool & b_adaptIndexCtoM = false)
- {
- mxArray * matlabSparseVec = mxCreateSparse( scores.getDim() /*m*/, 1/*n*/, scores.size()/*nzmax*/, mxREAL);
-
- // To make the returned sparse mxArray useful, you must initialize the pr, ir, jc, and (if it exists) pi arrays.
- // mxCreateSparse allocates space for:
- //
- // A pr array of length nzmax.
- // A pi array of length nzmax, but only if ComplexFlag is mxCOMPLEX in C (1 in Fortran).
- // An ir array of length nzmax.
- // A jc array of length n+1.
-
- double* prPtr = mxGetPr(matlabSparseVec);
- mwIndex * ir = mxGetIr( matlabSparseVec );
-
- mwIndex * jc = mxGetJc( matlabSparseVec );
- jc[1] = scores.size(); jc[0] = 0;
-
-
- mwSize cnt = 0;
-
- for ( NICE::SparseVector::const_iterator myIt = scores.begin(); myIt != scores.end(); myIt++, cnt++ )
- {
- // set index
- if ( b_adaptIndexCtoM )
- ir[cnt] = myIt->first-1;
- else
- ir[cnt] = myIt->first;
-
- // set value
- prPtr[cnt] = myIt->second;
- }
-
- return matlabSparseVec;
- }
- mxArray* convertMatrixFromNice(NICE::Matrix & niceMatrix)
- {
- mxArray *matlabMatrix = mxCreateDoubleMatrix(niceMatrix.rows(),niceMatrix.cols(),mxREAL);
- double* matlabMatrixPtr = mxGetPr(matlabMatrix);
- for(int i=0; i<niceMatrix.rows(); i++)
- {
- for(int j=0; j<niceMatrix.cols(); j++)
- {
- matlabMatrixPtr[i + j*niceMatrix.rows()] = niceMatrix(i,j);
- }
- }
- return matlabMatrix;
- }
- NICE::Matrix convertMatrixToNice(const mxArray* matlabMatrix)
- {
- //todo: do not assume double
- const mwSize *dims;
- int dimx, dimy, numdims;
- //figure out dimensions
- dims = mxGetDimensions(matlabMatrix);
- numdims = mxGetNumberOfDimensions(matlabMatrix);
- dimy = (int)dims[0]; dimx = (int)dims[1];
- double* ptr = mxGetPr(matlabMatrix);
- NICE::Matrix niceMatrix(ptr, dimy, dimx, NICE::Matrix::external);
- return niceMatrix;
- }
- mxArray* convertVectorFromNice(NICE::Vector & niceVector)
- {
- //cout << "start convertVectorFromNice" << endl;
- mxArray *matlabVector = mxCreateDoubleMatrix(niceVector.size(), 1, mxREAL);
- double* matlabVectorPtr = mxGetPr(matlabVector);
- for(int i=0;i<niceVector.size(); i++)
- {
- matlabVectorPtr[i] = niceVector[i];
- }
- return matlabVector;
- }
- NICE::Vector convertVectorToNice(const mxArray* matlabMatrix)
- {
- //todo: do not assume double
- const mwSize *dims;
- int dimx, dimy, numdims;
- //figure out dimensions
- dims = mxGetDimensions(matlabMatrix);
- numdims = mxGetNumberOfDimensions(matlabMatrix);
- dimy = (int)dims[0]; dimx = (int)dims[1];
- double* ptr = mxGetPr(matlabMatrix);
- if(dimx != 1 && dimy != 1)
- mexErrMsgIdAndTxt("mexnice:error","Vector expected");
- int dim = max(dimx, dimy);
- NICE::Vector niceVector(dim, 0.0);
-
- for(int i=0;i<dim;i++)
- {
- niceVector(i) = ptr[i];
- }
- return niceVector;
- }
- std::string convertMatlabToString(const mxArray *matlabString)
- {
- if(!mxIsChar(matlabString))
- mexErrMsgIdAndTxt("mexnice:error","Expected string");
- char *cstring = mxArrayToString(matlabString);
- std::string s(cstring);
- mxFree(cstring);
- return s;
- }
- int convertMatlabToInt32(const mxArray *matlabInt32)
- {
- if(!mxIsInt32(matlabInt32))
- mexErrMsgIdAndTxt("mexnice:error","Expected int32");
- int* ptr = (int*)mxGetData(matlabInt32);
- return ptr[0];
- }
- double convertMatlabToDouble(const mxArray *matlabDouble)
- {
- if(!mxIsDouble(matlabDouble))
- mexErrMsgIdAndTxt("mexnice:error","Expected double");
- double* ptr = (double*)mxGetData(matlabDouble);
- return ptr[0];
- }
- NICE::Config parseParameters(const mxArray *prhs[], int nrhs)
- {
- NICE::Config conf;
-
- // if first argument is the filename of an existing config file,
- // read the config accordingly
-
- int i_start ( 0 );
- std::string variable = convertMatlabToString(prhs[i_start]);
- if(variable == "conf")
- {
- conf = NICE::Config ( convertMatlabToString( prhs[i_start+1] ) );
- i_start = i_start+2;
- }
-
- // now run over all given parameter specifications
- // and add them to the config
- for( int i=i_start; i < nrhs; i+=2 )
- {
- std::string variable = convertMatlabToString(prhs[i]);
- if(variable == "ils_verbose")
- {
- string value = convertMatlabToString(prhs[i+1]);
- if(value != "true" && value != "false")
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'ils_verbose\'. \'true\' or \'false\' expected.");
- if(value == "true")
- conf.sB("GPHIKClassifier", variable, true);
- else
- conf.sB("GPHIKClassifier", variable, false);
- }
- if(variable == "ils_max_iterations")
- {
- int value = convertMatlabToInt32(prhs[i+1]);
- if(value < 1)
- mexErrMsgIdAndTxt("mexnice:error","Expected parameter value larger than 0 for \'ils_max_iterations\'.");
- conf.sI("GPHIKClassifier", variable, value);
- }
- if(variable == "ils_method")
- {
- string value = convertMatlabToString(prhs[i+1]);
- if(value != "CG" && value != "CGL" && value != "SYMMLQ" && value != "MINRES")
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'ils_method\'. \'CG\', \'CGL\', \'SYMMLQ\' or \'MINRES\' expected.");
- conf.sS("GPHIKClassifier", variable, value);
- }
- if(variable == "ils_min_delta")
- {
- double value = convertMatlabToDouble(prhs[i+1]);
- if(value < 0.0)
- mexErrMsgIdAndTxt("mexnice:error","Expected parameter value larger than 0 for \'ils_min_delta\'.");
- conf.sD("GPHIKClassifier", variable, value);
- }
- if(variable == "ils_min_residual")
- {
- double value = convertMatlabToDouble(prhs[i+1]);
- if(value < 0.0)
- mexErrMsgIdAndTxt("mexnice:error","Expected parameter value larger than 0 for \'ils_min_residual\'.");
- conf.sD("GPHIKClassifier", variable, value);
- }
- if(variable == "optimization_method")
- {
- string value = convertMatlabToString(prhs[i+1]);
- if(value != "greedy" && value != "downhillsimplex" && value != "none")
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'optimization_method\'. \'greedy\', \'downhillsimplex\' or \'none\' expected.");
- conf.sS("GPHIKClassifier", variable, value);
- }
- if(variable == "use_quantization")
- {
- string value = convertMatlabToString(prhs[i+1]);
- if(value != "true" && value != "false")
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'use_quantization\'. \'true\' or \'false\' expected.");
- if(value == "true")
- conf.sB("GPHIKClassifier", variable, true);
- else
- conf.sB("GPHIKClassifier", variable, false);
- }
- if(variable == "num_bins")
- {
- int value = convertMatlabToInt32(prhs[i+1]);
- if(value < 1)
- mexErrMsgIdAndTxt("mexnice:error","Expected parameter value larger than 0 for \'num_bins\'.");
- conf.sI("GPHIKClassifier", variable, value);
- }
- if(variable == "transform")
- {
- string value = convertMatlabToString(prhs[i+1]);
- if(value != "absexp" && value != "exp" && value != "MKL" && value != "WeightedDim")
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'transform\'. \'absexp\', \'exp\' , \'MKL\' or \'WeightedDim\' expected.");
- conf.sS("GPHIKClassifier", variable, value);
- }
- if(variable == "verboseTime")
- {
- string value = convertMatlabToString(prhs[i+1]);
- if(value != "true" && value != "false")
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'verboseTime\'. \'true\' or \'false\' expected.");
- if(value == "true")
- conf.sB("GPHIKClassifier", variable, true);
- else
- conf.sB("GPHIKClassifier", variable, false);
- }
- if(variable == "verbose")
- {
- string value = convertMatlabToString(prhs[i+1]);
- if(value != "true" && value != "false")
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'verbose\'. \'true\' or \'false\' expected.");
- if(value == "true")
- conf.sB("GPHIKClassifier", variable, true);
- else
- conf.sB("GPHIKClassifier", variable, false);
- }
- if(variable == "noise")
- {
- double value = convertMatlabToDouble(prhs[i+1]);
- if(value < 0.0)
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value larger than 0 for \'noise\'.");
- conf.sD("GPHIKClassifier", variable, value);
- }
- if(variable == "optimize_noise")
- {
- string value = convertMatlabToString(prhs[i+1]);
- if(value != "true" && value != "false")
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'optimize_noise\'. \'true\' or \'false\' expected.");
- if(value == "true")
- conf.sB("GPHIKClassifier", variable, true);
- else
- conf.sB("GPHIKClassifier", variable, false);
- }
-
- if(variable == "varianceApproximation")
- {
- string value = convertMatlabToString(prhs[i+1]);
- if(value != "approximate_fine" && value != "approximate_rough" && value != "exact" && value != "none")
- mexErrMsgIdAndTxt("mexnice:error","Unexpected parameter value for \'varianceApproximation\'. \'approximate_fine\', \'approximate_rough\', \'none\' or \'exact\' expected.");
- conf.sS("GPHIKClassifier", variable, value);
- }
-
- if(variable == "nrOfEigenvaluesToConsiderForVarApprox")
- {
- double value = convertMatlabToDouble(prhs[i+1]);
- conf.sI("GPHIKClassifier", variable, (int) value);
- }
-
- }
- return conf;
- }
- // MAIN MATLAB FUNCTION
- void mexFunction(int nlhs, mxArray *plhs[], int nrhs, const mxArray *prhs[])
- {
- // get the command string specifying what to do
- if (nrhs < 1)
- mexErrMsgTxt("No commands and options passed... Aborting!");
-
- if( !mxIsChar( prhs[0] ) )
- mexErrMsgTxt("First argument needs to be the command, ie.e, the class method to call... Aborting!");
-
- std::string cmd = convertMatlabToString( prhs[0] );
-
-
- // create object
- if ( !strcmp("new", cmd.c_str() ) )
- {
- // check output variable
- if (nlhs != 1)
- mexErrMsgTxt("New: One output expected.");
-
- // read config settings
- NICE::Config conf = parseParameters(prhs+1,nrhs-1);
-
- // create class instance
- NICE::GPHIKClassifier * classifier = new NICE::GPHIKClassifier ( &conf );
-
-
- // handle to the C++ instance
- plhs[0] = convertPtr2Mat<NICE::GPHIKClassifier>( classifier );
- return;
- }
-
- // in all other cases, there should be a second input,
- // which the be the class instance handle
- if (nrhs < 2)
- mexErrMsgTxt("Second input should be a class instance handle.");
-
- // delete object
- if ( !strcmp("delete", cmd.c_str() ) )
- {
- // Destroy the C++ object
- destroyObject<NICE::GPHIKClassifier>(prhs[1]);
- return;
- }
-
- // get the class instance pointer from the second input
- // every following function needs the classifier object
- NICE::GPHIKClassifier * classifier = convertMat2Ptr<NICE::GPHIKClassifier>(prhs[1]);
-
-
- ////////////////////////////////////////
- // Check which class method to call //
- ////////////////////////////////////////
-
-
- // standard train - assumes initialized object
- if (!strcmp("train", cmd.c_str() ))
- {
- // Check parameters
- if (nlhs < 0 || nrhs < 4)
- {
- mexErrMsgTxt("Train: Unexpected arguments.");
- }
-
- //------------- read the data --------------
-
- std::vector< NICE::SparseVector *> examplesTrain;
- NICE::Vector yMultiTrain;
- if ( mxIsSparse( prhs[2] ) )
- {
- examplesTrain = convertSparseMatrixToNice( prhs[2] );
- }
- else
- {
- NICE::Matrix dataTrain;
- dataTrain = convertMatrixToNice(prhs[2]);
-
- //----------------- convert data to sparse data structures ---------
- examplesTrain.resize( dataTrain.rows() );
-
- std::vector< NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin();
- for (int i = 0; i < (int)dataTrain.rows(); i++, exTrainIt++)
- {
- *exTrainIt = new NICE::SparseVector( dataTrain.getRow(i) );
- }
- }
-
- yMultiTrain = convertVectorToNice(prhs[3]);
-
- // std::cerr << " DATA AFTER CONVERSION: \n" << std::endl;
- // int lineIdx(0);
- // for ( std::vector< NICE::SparseVector *>::const_iterator exTrainIt = examplesTrain.begin();
- // exTrainIt != examplesTrain.end(); exTrainIt++, lineIdx++)
- // {
- // std::cerr << "\n lineIdx: " << lineIdx << std::endl;
- // (*exTrainIt)->store( std::cerr );
- //
- // }
- // test assumption
- {
- if( yMultiTrain.Min() < 0)
- mexErrMsgIdAndTxt("mexnice:error","Class labels smaller 0 are not allowed");
- }
- //----------------- train our classifier -------------
- classifier->train ( examplesTrain , yMultiTrain );
- //----------------- clean up -------------
- for(int i=0;i<examplesTrain.size();i++)
- delete examplesTrain[i];
-
- return;
- }
-
-
- // Classify
- if ( !strcmp("classify", cmd.c_str() ) )
- {
- // Check parameters
- if ( (nlhs < 0) || (nrhs < 2) )
- {
- mexErrMsgTxt("Test: Unexpected arguments.");
- }
-
- //------------- read the data --------------
- int result;
- NICE::SparseVector scores;
- double uncertainty;
- if ( mxIsSparse( prhs[2] ) )
- {
- NICE::SparseVector * example;
- example = new NICE::SparseVector ( convertSparseVectorToNice( prhs[2] ) );
- classifier->classify ( example, result, scores, uncertainty );
-
- //----------------- clean up -------------
- delete example;
- }
- else
- {
- NICE::Vector * example;
- example = new NICE::Vector ( convertVectorToNice(prhs[2]) );
- classifier->classify ( example, result, scores, uncertainty );
-
- //----------------- clean up -------------
- delete example;
- }
-
-
- // output
- plhs[0] = mxCreateDoubleScalar( result );
-
-
- if(nlhs >= 2)
- {
- plhs[1] = convertSparseVectorFromNice( scores, true /*b_adaptIndex*/);
- }
- if(nlhs >= 3)
- {
- plhs[2] = mxCreateDoubleScalar( uncertainty );
- }
- return;
- }
-
- // Classify
- if ( !strcmp("uncertainty", cmd.c_str() ) )
- {
- // Check parameters
- if ( (nlhs < 0) || (nrhs < 2) )
- {
- mexErrMsgTxt("Test: Unexpected arguments.");
- }
-
- double uncertainty;
-
- //------------- read the data --------------
- if ( mxIsSparse( prhs[2] ) )
- {
- NICE::SparseVector * example;
- example = new NICE::SparseVector ( convertSparseVectorToNice( prhs[2] ) );
- classifier->predictUncertainty( example, uncertainty );
-
- //----------------- clean up -------------
- delete example;
- }
- else
- {
- NICE::Vector * example;
- example = new NICE::Vector ( convertVectorToNice(prhs[2]) );
- classifier->predictUncertainty( example, uncertainty );
-
- //----------------- clean up -------------
- delete example;
- }
-
-
- // output
- plhs[0] = mxCreateDoubleScalar( uncertainty );
- return;
- }
-
-
- // Test
- if ( !strcmp("test", cmd.c_str() ) )
- {
- // Check parameters
- if (nlhs < 0 || nrhs < 4)
- mexErrMsgTxt("Test: Unexpected arguments.");
- //------------- read the data --------------
-
-
- bool dataIsSparse ( mxIsSparse( prhs[2] ) );
-
- std::vector< NICE::SparseVector *> dataTest_sparse;
- NICE::Matrix dataTest_dense;
- if ( dataIsSparse )
- {
- dataTest_sparse = convertSparseMatrixToNice( prhs[2] );
- }
- else
- {
- dataTest_dense = convertMatrixToNice(prhs[2]);
- }
- NICE::Vector yMultiTest;
- yMultiTest = convertVectorToNice(prhs[3]);
-
- // ------------------------------------------
- // ------------- PREPARATION --------------
- // ------------------------------------------
-
- // determine classes known during training and corresponding mapping
- // thereby allow for non-continous class labels
- std::set<int> classesKnownTraining = classifier->getKnownClassNumbers();
-
- int noClassesKnownTraining ( classesKnownTraining.size() );
- std::map<int,int> mapClNoToIdxTrain;
- std::set<int>::const_iterator clTrIt = classesKnownTraining.begin();
- for ( int i=0; i < noClassesKnownTraining; i++, clTrIt++ )
- mapClNoToIdxTrain.insert ( std::pair<int,int> ( *clTrIt, i ) );
-
- // determine classes known during testing and corresponding mapping
- // thereby allow for non-continous class labels
- std::set<int> classesKnownTest;
- classesKnownTest.clear();
-
-
- // determine which classes we have in our label vector
- // -> MATLAB: myClasses = unique(y);
- for ( NICE::Vector::const_iterator it = yMultiTest.begin(); it != yMultiTest.end(); it++ )
- {
- if ( classesKnownTest.find ( *it ) == classesKnownTest.end() )
- {
- classesKnownTest.insert ( *it );
- }
- }
-
- int noClassesKnownTest ( classesKnownTest.size() );
- std::map<int,int> mapClNoToIdxTest;
- std::set<int>::const_iterator clTestIt = classesKnownTest.begin();
- for ( int i=0; i < noClassesKnownTest; i++, clTestIt++ )
- mapClNoToIdxTest.insert ( std::pair<int,int> ( *clTestIt, i ) );
-
- int i_numTestSamples;
-
- if ( dataIsSparse )
- i_numTestSamples = dataTest_sparse.size();
- else
- i_numTestSamples = (int) dataTest_dense.rows();
-
- NICE::Matrix confusionMatrix( noClassesKnownTraining, noClassesKnownTest, 0.0);
- NICE::Matrix scores( i_numTestSamples, noClassesKnownTraining, 0.0);
-
-
- // ------------------------------------------
- // ------------- CLASSIFICATION --------------
- // ------------------------------------------
-
- NICE::Timer t;
- double testTime (0.0);
-
- for (int i = 0; i < i_numTestSamples; i++)
- {
- //----------------- convert data to sparse data structures ---------
-
- int result;
- NICE::SparseVector exampleScoresSparse;
- if ( dataIsSparse )
- {
- // and classify
- t.start();
- classifier->classify( dataTest_sparse[ i ], result, exampleScoresSparse );
- t.stop();
- testTime += t.getLast();
- }
- else
- {
- NICE::Vector example ( dataTest_dense.getRow(i) );
- // and classify
- t.start();
- classifier->classify( &example, result, exampleScoresSparse );
- t.stop();
- testTime += t.getLast();
- }
- confusionMatrix( mapClNoToIdxTrain.find(result)->second, mapClNoToIdxTest.find(yMultiTest[i])->second ) += 1.0;
- int scoreCnt ( 0 );
- for ( NICE::SparseVector::const_iterator scoreIt = exampleScoresSparse.begin(); scoreIt != exampleScoresSparse.end(); scoreIt++, scoreCnt++ )
- scores(i,scoreCnt) = scoreIt->second;
-
- }
-
- std::cerr << "Time for testing: " << testTime << std::endl;
-
- // clean up
- if ( dataIsSparse )
- {
- for ( std::vector<NICE::SparseVector *>::iterator it = dataTest_sparse.begin(); it != dataTest_sparse.end(); it++)
- delete *it;
- }
-
- confusionMatrix.normalizeColumnsL1();
- //std::cerr << confusionMatrix << std::endl;
- double recRate = confusionMatrix.trace()/confusionMatrix.rows();
- //std::cerr << "average recognition rate: " << recRate << std::endl;
-
- plhs[0] = mxCreateDoubleScalar( recRate );
- if(nlhs >= 2)
- plhs[1] = convertMatrixFromNice(confusionMatrix);
- if(nlhs >= 3)
- plhs[2] = convertMatrixFromNice(scores);
-
-
- return;
- }
-
- // store the classifier
- if ( !strcmp("store", cmd.c_str() ) || !strcmp("save", cmd.c_str() ) )
- {
- // Check parameters
- if ( nrhs < 3 )
- mexErrMsgTxt("store: no destination given.");
-
- std::string s_destination = convertMatlabToString( prhs[2] );
-
- std::filebuf fb;
- fb.open ( s_destination.c_str(), ios::out );
- std::ostream os(&fb);
- //
- classifier->store( os );
- //
- fb.close();
-
- return;
- }
-
- // load classifier from external file
- if ( !strcmp("restore", cmd.c_str() ) || !strcmp("load", cmd.c_str() ) )
- {
- // Check parameters
- if ( nrhs < 3 )
- mexErrMsgTxt("restore: no destination given.");
-
- std::string s_destination = convertMatlabToString( prhs[2] );
-
- std::cerr << " aim at restoring the classifier from " << s_destination << std::endl;
-
- std::filebuf fbIn;
- fbIn.open ( s_destination.c_str(), ios::in );
- std::istream is (&fbIn);
- //
- classifier->restore( is );
- //
- fbIn.close();
-
- return;
- }
-
-
- // Got here, so command not recognized
-
- std::string errorMsg (cmd.c_str() );
- errorMsg += " -- command not recognized.";
- mexErrMsgTxt( errorMsg.c_str() );
- }
|