12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448 |
- /**
- * @file FastMinKernel.cpp
- * @brief Efficient GPs with HIK for classification by regression (Implementation)
- * @author Alexander Freytag
- * @date 06-12-2011 (dd-mm-yyyy)
- */
- #include <iostream>
- //#include "tools.h"
- #include "core/basics/vectorio.h"
- #include "core/basics/Timer.h"
- #include "FastMinKernel.h"
- using namespace std;
- using namespace NICE;
- /* protected methods*/
- /* public methods*/
- FastMinKernel::FastMinKernel()
- {
- this->d = -1;
- this->n = -1;
- this->noise = 1.0;
- approxScheme = MEDIAN;
- verbose = false;
- this->setDebug(false);
- }
- FastMinKernel::FastMinKernel( const std::vector<std::vector<double> > & X, const double noise, const bool _debug, const int & _dim)
- {
- this->setDebug(_debug);
- this->hik_prepare_kernel_multiplications ( X, this->X_sorted, _dim);
- this->d = X_sorted.get_d();
- this->n = X_sorted.get_n();
- this->noise = noise;
- approxScheme = MEDIAN;
- verbose = false;
- }
-
- #ifdef NICE_USELIB_MATIO
- FastMinKernel::FastMinKernel ( const sparse_t & X, const double noise, const std::map<int, int> & examples, const bool _debug, const int & _dim) : X_sorted( X, examples, _dim )
- {
- this->d = X_sorted.get_d();
- this->n = X_sorted.get_n();
- this->noise = noise;
- approxScheme = MEDIAN;
- verbose = false;
- this->setDebug(_debug);
- }
- #endif
- FastMinKernel::FastMinKernel ( const vector< SparseVector * > & X, const double noise, const bool _debug, const bool & dimensionsOverExamples, const int & _dim)
- {
- this->setDebug(_debug);
- this->hik_prepare_kernel_multiplications ( X, this->X_sorted, dimensionsOverExamples, _dim);
- this->d = X_sorted.get_d();
- this->n = X_sorted.get_n();
- this->noise = noise;
- approxScheme = MEDIAN;
- verbose = false;
- }
- FastMinKernel::~FastMinKernel()
- {
- }
- void FastMinKernel::applyFunctionToFeatureMatrix ( const NICE::ParameterizedFunction *pf)
- {
- this->X_sorted.applyFunctionToFeatureMatrix(pf);
- }
- void FastMinKernel::hik_prepare_kernel_multiplications(const std::vector<std::vector<double> > & X, NICE::FeatureMatrixT<double> & X_sorted, const int & _dim)
- {
- X_sorted.set_features(X, _dim);
- }
- void FastMinKernel::hik_prepare_kernel_multiplications(const std::vector< NICE::SparseVector * > & X, NICE::FeatureMatrixT<double> & X_sorted, const bool & dimensionsOverExamples, const int & _dim)
- {
- X_sorted.set_features(X, dimensionsOverExamples, _dim);
- }
- void FastMinKernel::hik_prepare_alpha_multiplications(const NICE::Vector & alpha, NICE::VVector & A, NICE::VVector & B) const
- {
- // std::cerr << "FastMinKernel::hik_prepare_alpha_multiplications" << std::endl;
- // std::cerr << "alpha: " << alpha << std::endl;
- A.resize(d);
- B.resize(d);
- // efficient calculation of k*alpha
- // ---------------------------------
- //
- // sum_i alpha_i k(x^i,x) = sum_i alpha_i sum_k min(x^i_k,x_k)
- // = sum_k sum_i alpha_i min(x^i_k, x_k)
- //
- // now let us define l_k = { i | x^i_k <= x_k }
- // and u_k = { i | x^i_k > x_k }, this leads to
- //
- // = sum_k ( sum_{l \in l_k} alpha_l x^i_k + sum_{u \in u_k} alpha_u x_k
- // = sum_k ( sum_{l \in l_k} \alpha_l x^l_k + x_k * sum_{u \in u_k}
- // alpha_u
- //
- // We also define
- // l^j_k = { i | x^i_j <= x^j_k } and
- // u^j_k = { i | x^i_k > x^j_k }
- //
- // We now need the partial sums
- //
- // (Definition 1)
- // a_{k,j} = \sum_{l \in l^j_k} \alpha_l x^l_k
- //
- // and \sum_{u \in u^j_k} \alpha_u
- // according to increasing values of x^l_k
- //
- // With
- // (Definition 2)
- // b_{k,j} = \sum_{l \in l^j_k} \alpha_l,
- //
- // we get
- // \sum_{u \in u^j_k} \alpha_u = \sum_{u=1}^n alpha_u - \sum_{l \in l^j_k} \alpha_l
- // = b_{k,n} - b_{k,j}
- // we only need as many entries as we have nonZero entries in our features for the corresponding dimensions
- for (int i = 0; i < d; i++)
- {
- uint numNonZero = X_sorted.getNumberOfNonZeroElementsPerDimension(i);
- //DEBUG
- //std::cerr << "number of non-zero elements in dimension " << i << " / " << d << ": " << numNonZero << std::endl;
- A[i].resize( numNonZero );
- B[i].resize( numNonZero );
- }
-
- // for more information see hik_prepare_alpha_multiplications
-
- for (int dim = 0; dim < d; dim++)
- {
- double alpha_sum(0.0);
- double alpha_times_x_sum(0.0);
- int cntNonzeroFeat(0);
-
- const multimap< double, SortedVectorSparse<double>::dataelement> & nonzeroElements = X_sorted.getFeatureValues(dim).nonzeroElements();
- // loop through all elements in sorted order
- for ( SortedVectorSparse<double>::const_elementpointer i = nonzeroElements.begin(); i != nonzeroElements.end(); i++ )
- {
- const SortedVectorSparse<double>::dataelement & de = i->second;
-
- // index of the feature
- int index = de.first;
- // transformed element of the feature
- //
- double elem( de.second );
-
- alpha_times_x_sum += alpha[index] * elem;
- A[dim][cntNonzeroFeat] = alpha_times_x_sum;
-
- alpha_sum += alpha[index];
- B[dim][cntNonzeroFeat] = alpha_sum;
- cntNonzeroFeat++;
- }
- }
- // A.store(std::cerr);
- // B.store(std::cerr);
- }
- double *FastMinKernel::hik_prepare_alpha_multiplications_fast(const NICE::VVector & A, const NICE::VVector & B, const Quantization & q, const ParameterizedFunction *pf ) const
- {
- //NOTE keep in mind: for doing this, we already have precomputed A and B using hik_prepare_alpha_multiplications!
-
- // number of quantization bins
- uint hmax = q.size();
- // store (transformed) prototypes
- double *prototypes = new double [ hmax ];
- for ( uint i = 0 ; i < hmax ; i++ )
- if ( pf != NULL ) {
- // FIXME: the transformed prototypes could change from dimension to another dimension
- // We skip this flexibility ...but it should be changed in the future
- prototypes[i] = pf->f ( 1, q.getPrototype(i) );
- } else {
- prototypes[i] = q.getPrototype(i);
- }
- // creating the lookup table as pure C, which might be beneficial
- // for fast evaluation
- double *Tlookup = new double [ hmax * this->d ];
- // std::cerr << "size of LUT: " << hmax * this->d << std::endl;
- // sizeOfLUT = hmax * this->d;
- // loop through all dimensions
- for (int dim = 0; dim < this->d; dim++)
- {
- int nrZeroIndices = X_sorted.getNumberOfZeroElementsPerDimension(dim);
- if ( nrZeroIndices == n )
- continue;
- const multimap< double, SortedVectorSparse<double>::dataelement> & nonzeroElements = X_sorted.getFeatureValues(dim).nonzeroElements();
-
- SortedVectorSparse<double>::const_elementpointer i = nonzeroElements.begin();
- SortedVectorSparse<double>::const_elementpointer iPredecessor = nonzeroElements.begin();
-
- // index of the element, which is always bigger than the current value fval
- int index = 0;
- // we use the quantization of the original features! the transformed feature were
- // already used to calculate A and B, this of course assumes monotonic functions!!!
- int qBin = q.quantize ( i->first );
- // the next loop is linear in max(hmax, n)
- // REMARK: this could be changed to hmax*log(n), when
- // we use binary search
-
- for (int j = 0; j < (int)hmax; j++)
- {
- double fval = prototypes[j];
- double t;
- if ( (index == 0) && (j < qBin) ) {
- // current element is smaller than everything else
- // resulting value = fval * sum_l=1^n alpha_l
- t = fval*( B[dim][this->n-1 - nrZeroIndices] );
- } else {
- // move to next example, if necessary
- while ( (j >= qBin) && ( index < (this->n-1-nrZeroIndices)) )
- {
- index++;
- iPredecessor = i;
- i++;
- if ( i->first != iPredecessor->first )
- qBin = q.quantize ( i->first );
- }
- // compute current element in the lookup table and keep in mind that
- // index is the next element and not the previous one
- //NOTE pay attention: this is only valid if we all entries are positiv! - if not, ask wether the current feature is greater than zero. If so, subtract the nrZeroIndices, if not do not
- if ( (j >= qBin) && ( index==(this->n-1-nrZeroIndices) ) ) {
- // the current element (fval) is equal or bigger to the element indexed by index
- // in fact, the term B[dim][this->n-1-nrZeroIndices] - B[dim][index] is equal to zero and vanishes, which is logical, since all elements are smaller than j!
- t = A[dim][index];// + fval*( B[dim][this->n-1-nrZeroIndices] - B[dim][index] );
- } else {
- // standard case
- t = A[dim][index-1] + fval*( B[dim][this->n-1-nrZeroIndices] - B[dim][index-1] );
- }
- }
- Tlookup[ dim*hmax + j ] = t;
- }
- }
- delete [] prototypes;
- return Tlookup;
- }
- double *FastMinKernel::hikPrepareLookupTable(const NICE::Vector & alpha, const Quantization & q, const ParameterizedFunction *pf ) const
- {
- // number of quantization bins
- uint hmax = q.size();
- // store (transformed) prototypes
- double *prototypes = new double [ hmax ];
- for ( uint i = 0 ; i < hmax ; i++ )
- if ( pf != NULL ) {
- // FIXME: the transformed prototypes could change from dimension to another dimension
- // We skip this flexibility ...but it should be changed in the future
- prototypes[i] = pf->f ( 1, q.getPrototype(i) );
- } else {
- prototypes[i] = q.getPrototype(i);
- }
- // creating the lookup table as pure C, which might be beneficial
- // for fast evaluation
- double *Tlookup = new double [ hmax * this->d ];
- // sizeOfLUT = hmax * this->d;
-
- // loop through all dimensions
- for (int dim = 0; dim < this->d; dim++)
- {
- int nrZeroIndices = X_sorted.getNumberOfZeroElementsPerDimension(dim);
- if ( nrZeroIndices == n )
- continue;
- const multimap< double, SortedVectorSparse<double>::dataelement> & nonzeroElements = X_sorted.getFeatureValues(dim).nonzeroElements();
-
- double alphaSumTotalInDim(0.0);
- double alphaTimesXSumTotalInDim(0.0);
- for ( SortedVectorSparse<double>::const_elementpointer i = nonzeroElements.begin(); i != nonzeroElements.end(); i++ )
- {
- alphaSumTotalInDim += alpha[i->second.first];
- alphaTimesXSumTotalInDim += alpha[i->second.first] * i->second.second;
- }
-
- SortedVectorSparse<double>::const_elementpointer i = nonzeroElements.begin();
- SortedVectorSparse<double>::const_elementpointer iPredecessor = nonzeroElements.begin();
-
- // index of the element, which is always bigger than the current value fval
- int index = 0;
-
- // we use the quantization of the original features! Nevetheless, the resulting lookupTable is computed using the transformed ones
- int qBin = q.quantize ( i->first );
-
- double alpha_sum(0.0);
- double alpha_times_x_sum(0.0);
- double alpha_sum_prev(0.0);
- double alpha_times_x_sum_prev(0.0);
-
- for (uint j = 0; j < hmax; j++)
- {
- double fval = prototypes[j];
- double t;
- if ( (index == 0) && (j < (uint)qBin) ) {
- // current element is smaller than everything else
- // resulting value = fval * sum_l=1^n alpha_l
- //t = fval*( B[dim][this->n-1 - nrZeroIndices] );
- t = fval*alphaSumTotalInDim;
- } else {
- // move to next example, if necessary
- while ( (j >= (uint)qBin) && ( index < (this->n-1-nrZeroIndices)) )
- {
- alpha_times_x_sum_prev = alpha_times_x_sum;
- alpha_sum_prev = alpha_sum;
- alpha_times_x_sum += alpha[i->second.first] * i->second.second; //i->dataElement.transformedFeatureValue
- alpha_sum += alpha[i->second.first]; //i->dataElement.OrigIndex
-
- index++;
- iPredecessor = i;
- i++;
- if ( i->first != iPredecessor->first )
- qBin = q.quantize ( i->first );
- }
- // compute current element in the lookup table and keep in mind that
- // index is the next element and not the previous one
- //NOTE pay attention: this is only valid if all entries are positiv! - if not, ask wether the current feature is greater than zero. If so, subtract the nrZeroIndices, if not do not
- if ( (j >= (uint)qBin) && ( index==(this->n-1-nrZeroIndices) ) ) {
- // the current element (fval) is equal or bigger to the element indexed by index
- // in fact, the term B[dim][this->n-1-nrZeroIndices] - B[dim][index] is equal to zero and vanishes, which is logical, since all elements are smaller than j!
- // double lastTermAlphaTimesXSum;
- // double lastTermAlphaSum;
- t = alphaTimesXSumTotalInDim;
- } else {
- // standard case
- t = alpha_times_x_sum + fval*( alphaSumTotalInDim - alpha_sum );
- }
- }
- Tlookup[ dim*hmax + j ] = t;
- }
- }
- delete [] prototypes;
- return Tlookup;
- }
- void FastMinKernel::hikUpdateLookupTable(double * T, const double & alphaNew, const double & alphaOld, const int & idx, const Quantization & q, const ParameterizedFunction *pf ) const
- {
-
- if (T == NULL)
- {
- fthrow(Exception, "FastMinKernel::hikUpdateLookupTable LUT not initialized, run FastMinKernel::hikPrepareLookupTable first!");
- return;
- }
-
- // number of quantization bins
- uint hmax = q.size();
- // store (transformed) prototypes
- double *prototypes = new double [ hmax ];
- for ( uint i = 0 ; i < hmax ; i++ )
- if ( pf != NULL ) {
- // FIXME: the transformed prototypes could change from dimension to another dimension
- // We skip this flexibility ...but it should be changed in the future
- prototypes[i] = pf->f ( 1, q.getPrototype(i) );
- } else {
- prototypes[i] = q.getPrototype(i);
- }
-
- double diffOfAlpha(alphaNew - alphaOld);
-
- // loop through all dimensions
- for (int dim = 0; dim < this->d; dim++)
- {
- double x_i ( (X_sorted(dim,idx)) );
-
- //TODO we could also check wether x_i < tol, if we would store the tol explicitely
- if (x_i == 0.0) //nothing to do in this dimension
- continue;
- //TODO we could speed up this with first do a binary search for the position where the min changes, and then do two separate for-loops
- for (uint j = 0; j < hmax; j++)
- {
- double fval;
- int q_bin = q.quantize(x_i);
- if (q_bin > j)
- fval = prototypes[j];
- else
- fval = x_i;
-
- // double fval = std::min(prototypes[j],x_i);
- T[ dim*hmax + j ] += diffOfAlpha*fval;
- }
- }
- delete [] prototypes;
- }
- void FastMinKernel::hik_kernel_multiply(const NICE::VVector & A, const NICE::VVector & B, const NICE::Vector & alpha, NICE::Vector & beta) const
- {
- beta.resize(n);
- beta.set(0.0);
- // runtime is O(n*d), we do no benefit from an additional lookup table here
- for (int dim = 0; dim < d; dim++)
- {
- // -- efficient sparse solution
- const multimap< double, SortedVectorSparse<double>::dataelement> & nonzeroElements = X_sorted.getFeatureValues(dim).nonzeroElements();
- int nrZeroIndices = X_sorted.getNumberOfZeroElementsPerDimension(dim);
- if ( nrZeroIndices == n ) {
- // all values are zero in this dimension :) and we can simply ignore the feature
- continue;
- }
- int cnt(0);
- for ( multimap< double, SortedVectorSparse<double>::dataelement>::const_iterator i = nonzeroElements.begin(); i != nonzeroElements.end(); i++, cnt++)
- {
- const SortedVectorSparse<double>::dataelement & de = i->second;
- uint feat = de.first;
- int inversePosition = cnt;
- double fval = de.second;
- // in which position was the element sorted in? actually we only care about the nonzero elements, so we have to subtract the number of zero elements.
- //NOTE pay attention: this is only valid if all entries are positiv! - if not, ask wether the current feature is greater than zero. If so, subtract the nrZeroIndices, if not do not
- //we definitly know that this element exists in inversePermutation, so we have not to check wether find returns .end() or not
- //int inversePosition(inversePermutation.find(feat)->second - nrZeroIndices);
- // sum_{l \in L_k} \alpha_l x^l_k
- //
- // A is zero for zero feature values (x^l_k is zero for all l \in L_k)
- double firstPart( A[dim][inversePosition] );
- // sum_{u \in U_k} alpha_u
- // B is not zero for zero feature values, but we do not
- // have to care about them, because it is multiplied with
- // the feature value
- // DEBUG for Björns code
- if ( (uint)dim >= B.size() )
- fthrow(Exception, "dim exceeds B.size: " << dim << " " << B.size() );
- if ( B[dim].size() == 0 )
- fthrow(Exception, "B[dim] is empty");
- if ( (n-1-nrZeroIndices < 0) || ((uint)(n-1-nrZeroIndices) >= B[dim].size() ) )
- fthrow(Exception, "n-1-nrZeroIndices is invalid: " << n << " " << nrZeroIndices << " " << B[dim].size() << " d: " << d);
- if ( inversePosition < 0 || (uint)inversePosition >= B[dim].size() )
- fthrow(Exception, "inverse position is invalid: " << inversePosition << " " << B[dim].size() );
- double secondPart( B[dim][n-1-nrZeroIndices] - B[dim][inversePosition]);
- beta[feat] += firstPart + fval * secondPart; // i->elementpointer->dataElement->Value
- }
- }
-
- //do we really want to considere noisy labels?
- for (int feat = 0; feat < n; feat++)
- {
- beta[feat] += noise*alpha[feat];
- }
- }
- void FastMinKernel::hik_kernel_multiply_fast(const double *Tlookup, const Quantization & q, const NICE::Vector & alpha, NICE::Vector & beta) const
- {
- beta.resize(n);
- beta.set(0.0);
- // runtime is O(n*d), we do no benefit from an additional lookup table here
- for (int dim = 0; dim < d; dim++)
- {
- // -- efficient sparse solution
- const multimap< double, SortedVectorSparse<double>::dataelement> & nonzeroElements = X_sorted.getFeatureValues(dim).nonzeroElements();
- int cnt(0);
- for ( multimap< double, SortedVectorSparse<double>::dataelement>::const_iterator i = nonzeroElements.begin(); i != nonzeroElements.end(); i++, cnt++)
- {
- const SortedVectorSparse<double>::dataelement & de = i->second;
- uint feat = de.first;
- uint qBin = q.quantize(i->first);
- beta[feat] += Tlookup[dim*q.size() + qBin];
- }
- }
-
- //do we really want to considere noisy labels?
- for (int feat = 0; feat < n; feat++)
- {
- beta[feat] += noise*alpha[feat];
- }
- }
- void FastMinKernel::hik_kernel_sum(const NICE::VVector & A, const NICE::VVector & B, const NICE::SparseVector & xstar, double & beta, const ParameterizedFunction *pf) const
- {
- // sparse version of hik_kernel_sum, no really significant changes,
- // we are just skipping zero elements
- beta = 0.0;
- for (SparseVector::const_iterator i = xstar.begin(); i != xstar.end(); i++)
- {
-
- int dim = i->first;
- double fval = i->second;
-
- int nrZeroIndices = X_sorted.getNumberOfZeroElementsPerDimension(dim);
- if ( nrZeroIndices == n ) {
- // all features are zero and let us ignore it completely
- continue;
- }
- int position;
- //where is the example x^z_i located in
- //the sorted array? -> perform binary search, runtime O(log(n))
- // search using the original value
- X_sorted.findFirstLargerInDimension(dim, fval, position);
- position--;
-
- //NOTE again - pay attention! This is only valid if all entries are NOT negative! - if not, ask wether the current feature is greater than zero. If so, subtract the nrZeroIndices, if not do not
- //sum_{l \in L_k} \alpha_l x^l_k
- double firstPart(0.0);
- //TODO in the "overnext" line there occurs the following error
- // Invalid read of size 8
- if (position >= 0)
- firstPart = (A[dim][position-nrZeroIndices]);
-
- // sum_{u \in U_k} alpha_u
-
- // sum_{u \in U_k} alpha_u
- // => double secondPart( B(dim, n-1) - B(dim, position));
- //TODO in the next line there occurs the following error
- // Invalid read of size 8
- double secondPart( B[dim][n-1-nrZeroIndices]);
- //TODO in the "overnext" line there occurs the following error
- // Invalid read of size 8
- if (position >= 0)
- secondPart-= B[dim][position-nrZeroIndices];
-
- if ( pf != NULL )
- {
- fval = pf->f ( dim, fval );
- }
-
- // but apply using the transformed one
- beta += firstPart + secondPart* fval;
- }
- }
- void FastMinKernel::hik_kernel_sum(const NICE::VVector & A, const NICE::VVector & B, const NICE::Vector & xstar, double & beta, const ParameterizedFunction *pf) const
- {
- beta = 0.0;
- int dim ( 0 );
- for (NICE::Vector::const_iterator i = xstar.begin(); i != xstar.end(); i++, dim++)
- {
-
- double fval = *i;
-
- int nrZeroIndices = X_sorted.getNumberOfZeroElementsPerDimension(dim);
- if ( nrZeroIndices == n ) {
- // all features are zero and let us ignore it completely
- continue;
- }
- int position;
- //where is the example x^z_i located in
- //the sorted array? -> perform binary search, runtime O(log(n))
- // search using the original value
- X_sorted.findFirstLargerInDimension(dim, fval, position);
- position--;
-
- //NOTE again - pay attention! This is only valid if all entries are NOT negative! - if not, ask wether the current feature is greater than zero. If so, subtract the nrZeroIndices, if not do not
- //sum_{l \in L_k} \alpha_l x^l_k
- double firstPart(0.0);
- //TODO in the "overnext" line there occurs the following error
- // Invalid read of size 8
- if (position >= 0)
- firstPart = (A[dim][position-nrZeroIndices]);
-
- // sum_{u \in U_k} alpha_u
-
- // sum_{u \in U_k} alpha_u
- // => double secondPart( B(dim, n-1) - B(dim, position));
- //TODO in the next line there occurs the following error
- // Invalid read of size 8
- double secondPart( B[dim][n-1-nrZeroIndices]);
- //TODO in the "overnext" line there occurs the following error
- // Invalid read of size 8
- if (position >= 0)
- secondPart-= B[dim][position-nrZeroIndices];
-
- if ( pf != NULL )
- {
- fval = pf->f ( dim, fval );
- }
-
- // but apply using the transformed one
- beta += firstPart + secondPart* fval;
- }
- }
- void FastMinKernel::hik_kernel_sum_fast(const double *Tlookup, const Quantization & q, const NICE::Vector & xstar, double & beta) const
- {
- beta = 0.0;
- if ((int) xstar.size() != d)
- {
- fthrow(Exception, "FastMinKernel::hik_kernel_sum_fast sizes of xstar and training data does not match!");
- return;
- }
- // runtime is O(d) if the quantizer is O(1)
- for (int dim = 0; dim < d; dim++)
- {
- double v = xstar[dim];
- uint qBin = q.quantize(v);
-
- beta += Tlookup[dim*q.size() + qBin];
- }
- }
- void FastMinKernel::hik_kernel_sum_fast(const double *Tlookup, const Quantization & q, const NICE::SparseVector & xstar, double & beta) const
- {
- beta = 0.0;
- // sparse version of hik_kernel_sum_fast, no really significant changes,
- // we are just skipping zero elements
- // for additional comments see the non-sparse version of hik_kernel_sum_fast
- // runtime is O(d) if the quantizer is O(1)
- for (SparseVector::const_iterator i = xstar.begin(); i != xstar.end(); i++ )
- {
- int dim = i->first;
- double v = i->second;
- uint qBin = q.quantize(v);
-
- beta += Tlookup[dim*q.size() + qBin];
- }
- }
- double *FastMinKernel::solveLin(const NICE::Vector & y, NICE::Vector & alpha, const Quantization & q, const ParameterizedFunction *pf, const bool & useRandomSubsets, uint maxIterations, const int & _sizeOfRandomSubset, double minDelta, bool timeAnalysis) const
- {
- int sizeOfRandomSubset(_sizeOfRandomSubset);
- bool verbose ( false );
- bool verboseMinimal ( false );
-
- // number of quantization bins
- uint hmax = q.size();
-
- NICE::Vector diagonalElements(y.size(),0.0);
- X_sorted.hikDiagonalElements(diagonalElements);
- diagonalElements += this->noise;
-
- NICE::Vector pseudoResidual (y.size(),0.0);
- NICE::Vector delta_alpha (y.size(),0.0);
- double alpha_old;
- double alpha_new;
- double x_i;
-
- // initialization
- if (alpha.size() != y.size())
- alpha.resize(y.size());
- alpha.set(0.0);
-
- double *Tlookup = new double [ hmax * this->d ];
- if ( (hmax*this->d) <= 0 ) return Tlookup;
- memset(Tlookup, 0, sizeof(Tlookup[0])*hmax*this->d);
-
- uint iter;
- Timer t;
- if ( timeAnalysis )
- t.start();
-
- if (useRandomSubsets)
- {
- std::vector<int> indices(y.size());
- for (uint i = 0; i < y.size(); i++)
- indices[i] = i;
-
- if (sizeOfRandomSubset <= 0)
- sizeOfRandomSubset = y.size();
-
- for ( iter = 1; iter <= maxIterations; iter++ )
- {
- NICE::Vector perm;
- randomPermutation(perm,indices,sizeOfRandomSubset);
-
- if ( timeAnalysis )
- {
- t.stop();
- Vector r;
- this->hik_kernel_multiply_fast(Tlookup, q, alpha, r);
- r = r - y;
-
- double res = r.normL2();
- double resMax = r.normInf();
- cerr << "SimpleGradientDescent: TIME " << t.getSum() << " " << res << " " << resMax << endl;
- t.start();
- }
-
- for ( int i = 0; i < sizeOfRandomSubset; i++)
- {
- pseudoResidual(perm[i]) = -y(perm[i]) + (this->noise*alpha(perm[i]));
- for (uint j = 0; j < (uint)this->d; j++)
- {
- x_i = X_sorted(j,perm[i]);
- pseudoResidual(perm[i]) += Tlookup[j*hmax + q.quantize(x_i)];
- }
-
- //NOTE: this threshhold could also be a parameter of the function call
- if ( fabs(pseudoResidual(perm[i])) > 1e-7 )
- {
- alpha_old = alpha(perm[i]);
- alpha_new = alpha_old - (pseudoResidual(perm[i])/diagonalElements(perm[i]));
- alpha(perm[i]) = alpha_new;
- delta_alpha(perm[i]) = alpha_old-alpha_new;
-
- this->hikUpdateLookupTable(Tlookup, alpha_new, alpha_old, perm[i], q, pf ); // works correctly
-
- } else
- {
- delta_alpha(perm[i]) = 0.0;
- }
-
- }
- // after this only residual(i) is the valid residual... we should
- // really update the whole vector somehow
-
- double delta = delta_alpha.normL2();
- if ( verbose ) {
- cerr << "FastMinKernel::solveLin: iteration " << iter << " / " << maxIterations << endl;
- cerr << "FastMinKernel::solveLin: delta = " << delta << endl;
- cerr << "FastMinKernel::solveLin: pseudo residual = " << pseudoResidual.scalarProduct(pseudoResidual) << endl;
- }
-
- if ( delta < minDelta )
- {
- if ( verbose )
- cerr << "FastMinKernel::solveLin: small delta" << endl;
- break;
- }
- }
- }
- else //don't use random subsets
- {
- for ( iter = 1; iter <= maxIterations; iter++ )
- {
-
- for ( uint i = 0; i < y.size(); i++ )
- {
-
- pseudoResidual(i) = -y(i) + (this->noise*alpha(i));
- for (uint j = 0; j < (uint) this->d; j++)
- {
- x_i = X_sorted(j,i);
- pseudoResidual(i) += Tlookup[j*hmax + q.quantize(x_i)];
- }
-
- //NOTE: this threshhold could also be a parameter of the function call
- if ( fabs(pseudoResidual(i)) > 1e-7 )
- {
- alpha_old = alpha(i);
- alpha_new = alpha_old - (pseudoResidual(i)/diagonalElements(i));
- alpha(i) = alpha_new;
- delta_alpha(i) = alpha_old-alpha_new;
-
- this->hikUpdateLookupTable(Tlookup, alpha_new, alpha_old, i, q, pf ); // works correctly
-
- } else
- {
- delta_alpha(i) = 0.0;
- }
-
- }
-
- double delta = delta_alpha.normL2();
- if ( verbose ) {
- cerr << "FastMinKernel::solveLin: iteration " << iter << " / " << maxIterations << endl;
- cerr << "FastMinKernel::solveLin: delta = " << delta << endl;
- cerr << "FastMinKernel::solveLin: pseudo residual = " << pseudoResidual.scalarProduct(pseudoResidual) << endl;
- }
-
- if ( delta < minDelta )
- {
- if ( verbose )
- cerr << "FastMinKernel::solveLin: small delta" << endl;
- break;
- }
- }
- }
-
- if (verboseMinimal)
- std::cerr << "FastMinKernel::solveLin -- needed " << iter << " iterations" << std::endl;
- return Tlookup;
- }
- void FastMinKernel::randomPermutation(NICE::Vector & permutation, const std::vector<int> & oldIndices, const int & newSize) const
- {
- std::vector<int> indices(oldIndices);
-
- int resultingSize (std::min((int) (oldIndices.size()),newSize) );
- permutation.resize(resultingSize);
-
- for (int i = 0; i < resultingSize; i++)
- {
- int newIndex(rand() % indices.size());
- permutation[i] = indices[newIndex ];
- indices.erase(indices.begin() + newIndex);
- }
- }
- double FastMinKernel::getFrobNormApprox()
- {
- double frobNormApprox(0.0);
-
- switch (approxScheme)
- {
- case MEDIAN:
- {
- //\| K \|_F^1 ~ (n/2)^2 \left( \sum_k \median_k \right)^2
- //motivation: estimate half of the values in dim k to zero and half of them to the median (-> lower bound expectation)
- for (int i = 0; i < d; i++)
- {
- double median = this->X_sorted.getFeatureValues(i).getMedian();
- frobNormApprox += median;
- }
-
- frobNormApprox = fabs(frobNormApprox) * n/2.0;
- break;
- }
- case EXPECTATION:
- {
- std::cerr << "EXPECTATION" << std::endl;
- //\| K \|_F^1^2 ~ \sum K_{ii}^2 + (n^2 - n) \left( \frac{1}{3} \sum_k \left( 2 a_k + b_k \right) \right)
- // with a_k = minimal value in dim k and b_k maximal value
-
- //first term
- NICE::Vector diagEl;
- X_sorted.hikDiagonalElements(diagEl);
- frobNormApprox += diagEl.normL2();
-
- //second term
- double secondTerm(0.0);
- for (int i = 0; i < d; i++)
- {
- double minInDim;
- minInDim = this->X_sorted.getFeatureValues(i).getMin();
- double maxInDim;
- maxInDim = this->X_sorted.getFeatureValues(i).getMax();
- std::cerr << "min: " << minInDim << " max: " << maxInDim << std::endl;
- secondTerm += 2.0*minInDim + maxInDim;
- }
- secondTerm /= 3.0;
- secondTerm = pow(secondTerm, 2);
- secondTerm *= (pow(this->n,2) - this->n);
- frobNormApprox += secondTerm;
-
-
- frobNormApprox = sqrt(frobNormApprox);
-
- break;
- }
- default:
- { //do nothing, approximate with zero :)
- break;
- }
- }
- return frobNormApprox;
- }
- void FastMinKernel::setApproximationScheme(const int & _approxScheme)
- {
- switch(_approxScheme)
- {
- case 0:
- {
- approxScheme = MEDIAN;
- break;
- }
- case 1:
- {
- approxScheme = EXPECTATION;
- break;
- }
- default:
- {
- approxScheme = MEDIAN;
- break;
- }
- }
- }
- void FastMinKernel::hikPrepareKVNApproximation(NICE::VVector & A) const
- {
- A.resize(d);
- // efficient calculation of |k_*|^2 = k_*^T * k_*
- // ---------------------------------
- //
- // \sum_{i=1}^{n} \left( \sum_{d=1}^{D} \min (x_d^*, x_d^i) \right)^2
- // <=\sum_{i=1}^{n} \sum_{d=1}^{D} \left( \min (x_d^*, x_d^i) \right)^2
- // = \sum_{d=1}^{D} \sum_{i=1}^{n} \left( \min (x_d^*, x_d^i) \right)^2
- // = \sum_{d=1}^{D} \left( \sum_{i:x_d^i < x_*^d} (x_d^i)^2 + \sum_{j: x_d^* \leq x_d^j} (x_d^*)^2 \right)
- //
- // again let us define l_d = { i | x_d^i <= x_d^* }
- // and u_d = { i | x_d^i > x_d^* }, this leads to
- //
- // = \sum_{d=1}^{D} ( \sum_{l \in l_d} (x_d^l)^2 + \sum_{u \in u_d} (x_d^*)^2
- // = \sum_{d=1}^{D} ( \sum_{l \in l_d} (x_d^l)^2 + (x_d^*)^2 \sum_{u \in u_d} 1
- //
- // We also define
- // l_d^j = { i | x_d^i <= x_d^j } and
- // u_d^j = { i | x_d^i > x_d^j }
- //
- // We now need the partial sums
- //
- // (Definition 1)
- // a_{d,j} = \sum_{l \in l_d^j} (x_d^l)^2
- // according to increasing values of x_d^l
- //
- // We end at
- // |k_*|^2 <= \sum_{d=1}^{D} \left( a_{d,r_d} + (x_d^*)^2 * |u_d^{r_d}| \right)
- // with r_d being the index of the last example in the ordered sequence for dimension d, that is not larger than x_d^*
- // we only need as many entries as we have nonZero entries in our features for the corresponding dimensions
- for (int i = 0; i < d; i++)
- {
- uint numNonZero = X_sorted.getNumberOfNonZeroElementsPerDimension(i);
- A[i].resize( numNonZero );
- }
- // for more information see hik_prepare_alpha_multiplications
-
- for (int dim = 0; dim < d; dim++)
- {
- double squared_sum(0.0);
- int cntNonzeroFeat(0);
-
- const multimap< double, SortedVectorSparse<double>::dataelement> & nonzeroElements = X_sorted.getFeatureValues(dim).nonzeroElements();
- // loop through all elements in sorted order
- for ( SortedVectorSparse<double>::const_elementpointer i = nonzeroElements.begin(); i != nonzeroElements.end(); i++ )
- {
- const SortedVectorSparse<double>::dataelement & de = i->second;
-
- // de: first - index, second - transformed feature
- double elem( de.second );
-
- squared_sum += pow( elem, 2 );
- A[dim][cntNonzeroFeat] = squared_sum;
- cntNonzeroFeat++;
- }
- }
- }
- double * FastMinKernel::hikPrepareKVNApproximationFast(NICE::VVector & A, const Quantization & q, const ParameterizedFunction *pf ) const
- {
- //NOTE keep in mind: for doing this, we already have precomputed A using hikPrepareSquaredKernelVector!
-
- // number of quantization bins
- uint hmax = q.size();
- // store (transformed) prototypes
- double *prototypes = new double [ hmax ];
- for ( uint i = 0 ; i < hmax ; i++ )
- if ( pf != NULL ) {
- // FIXME: the transformed prototypes could change from dimension to another dimension
- // We skip this flexibility ...but it should be changed in the future
- prototypes[i] = pf->f ( 1, q.getPrototype(i) );
- } else {
- prototypes[i] = q.getPrototype(i);
- }
- // creating the lookup table as pure C, which might be beneficial
- // for fast evaluation
- double *Tlookup = new double [ hmax * this->d ];
- // loop through all dimensions
- for (int dim = 0; dim < this->d; dim++)
- {
- int nrZeroIndices = X_sorted.getNumberOfZeroElementsPerDimension(dim);
- if ( nrZeroIndices == n )
- continue;
- const multimap< double, SortedVectorSparse<double>::dataelement> & nonzeroElements = X_sorted.getFeatureValues(dim).nonzeroElements();
-
- SortedVectorSparse<double>::const_elementpointer i = nonzeroElements.begin();
- SortedVectorSparse<double>::const_elementpointer iPredecessor = nonzeroElements.begin();
-
- // index of the element, which is always bigger than the current value fval
- int index = 0;
- // we use the quantization of the original features! the transformed feature were
- // already used to calculate A and B, this of course assumes monotonic functions!!!
- int qBin = q.quantize ( i->first );
- // the next loop is linear in max(hmax, n)
- // REMARK: this could be changed to hmax*log(n), when
- // we use binary search
-
- for (int j = 0; j < (int)hmax; j++)
- {
- double fval = prototypes[j];
- double t;
- if ( (index == 0) && (j < qBin) ) {
- // current element is smaller than everything else
- // resulting value = fval * sum_l=1^n 1
- t = pow( fval, 2 ) * (n-nrZeroIndices-index);
- } else {
- // move to next example, if necessary
- while ( (j >= qBin) && ( index < (this->n-nrZeroIndices)) )
- {
- index++;
- iPredecessor = i;
- i++;
- if ( i->first != iPredecessor->first )
- qBin = q.quantize ( i->first );
- }
- // compute current element in the lookup table and keep in mind that
- // index is the next element and not the previous one
- //NOTE pay attention: this is only valid if all entries are positiv! - if not, ask wether the current feature is greater than zero. If so, subtract the nrZeroIndices, if not do not
- if ( (j >= (uint)qBin) && ( index==(this->n-1-nrZeroIndices) ) ) {
- // the current element (fval) is equal or bigger to the element indexed by index
- // the second term vanishes, which is logical, since all elements are smaller than j!
- t = A[dim][index];
- } else {
- // standard case
- t = A[dim][index-1] + pow( fval, 2 ) * (n-nrZeroIndices-(index) );
- // A[dim][index-1] + fval * (n-nrZeroIndices-(index) );//fval*fval * (n-nrZeroIndices-(index-1) );
-
- }
- }
- Tlookup[ dim*hmax + j ] = t;
- }
- }
- delete [] prototypes;
- return Tlookup;
- }
- double* FastMinKernel::hikPrepareLookupTableForKVNApproximation(const Quantization & q, const ParameterizedFunction *pf ) const
- {
- // number of quantization bins
- uint hmax = q.size();
- // store (transformed) prototypes
- double *prototypes = new double [ hmax ];
- for ( uint i = 0 ; i < hmax ; i++ )
- if ( pf != NULL ) {
- // FIXME: the transformed prototypes could change from dimension to another dimension
- // We skip this flexibility ...but it should be changed in the future
- prototypes[i] = pf->f ( 1, q.getPrototype(i) );
- } else {
- prototypes[i] = q.getPrototype(i);
- }
- // creating the lookup table as pure C, which might be beneficial
- // for fast evaluation
- double *Tlookup = new double [ hmax * this->d ];
-
- // loop through all dimensions
- for (int dim = 0; dim < this->d; dim++)
- {
- int nrZeroIndices = X_sorted.getNumberOfZeroElementsPerDimension(dim);
- if ( nrZeroIndices == n )
- continue;
- const multimap< double, SortedVectorSparse<double>::dataelement> & nonzeroElements = X_sorted.getFeatureValues(dim).nonzeroElements();
-
- SortedVectorSparse<double>::const_elementpointer i = nonzeroElements.begin();
- SortedVectorSparse<double>::const_elementpointer iPredecessor = nonzeroElements.begin();
-
- // index of the element, which is always bigger than the current value fval
- int index = 0;
-
- // we use the quantization of the original features! Nevetheless, the resulting lookupTable is computed using the transformed ones
- int qBin = q.quantize ( i->first );
-
- double sum(0.0);
-
- for (uint j = 0; j < hmax; j++)
- {
- double fval = prototypes[j];
- double t;
- if ( (index == 0) && (j < (uint)qBin) ) {
- // current element is smaller than everything else
- // resulting value = fval * sum_l=1^n 1
- t = pow( fval, 2 ) * (n-nrZeroIndices-index);
- } else {
- // move to next example, if necessary
- while ( (j >= (uint)qBin) && ( index < (this->n-nrZeroIndices)) )
- {
- sum += pow( i->second.second, 2 ); //i->dataElement.transformedFeatureValue
-
- index++;
- iPredecessor = i;
- i++;
- if ( i->first != iPredecessor->first )
- qBin = q.quantize ( i->first );
- }
- // compute current element in the lookup table and keep in mind that
- // index is the next element and not the previous one
- //NOTE pay attention: this is only valid if we all entries are positiv! - if not, ask wether the current feature is greater than zero. If so, subtract the nrZeroIndices, if not do not
- if ( (j >= (uint)qBin) && ( index==(this->n-1-nrZeroIndices) ) ) {
- // the current element (fval) is equal or bigger to the element indexed by index
- // the second term vanishes, which is logical, since all elements are smaller than j!
- t = sum;
- } else {
- // standard case
- t = sum + pow( fval, 2 ) * (n-nrZeroIndices-(index) );
- }
- }
- Tlookup[ dim*hmax + j ] = t;
- }
- }
- delete [] prototypes;
- return Tlookup;
- }
- //////////////////////////////////////////
- // variance computation: sparse inputs
- //////////////////////////////////////////
- void FastMinKernel::hikComputeKVNApproximation(const NICE::VVector & A, const NICE::SparseVector & xstar, double & norm, const ParameterizedFunction *pf )
- {
- norm = 0.0;
- for (SparseVector::const_iterator i = xstar.begin(); i != xstar.end(); i++)
- {
-
- int dim = i->first;
- double fval = i->second;
-
- int nrZeroIndices = X_sorted.getNumberOfZeroElementsPerDimension(dim);
- if ( nrZeroIndices == n ) {
- // all features are zero so let us ignore them completely
- continue;
- }
- int position;
- //where is the example x^z_i located in
- //the sorted array? -> perform binary search, runtime O(log(n))
- // search using the original value
- X_sorted.findFirstLargerInDimension(dim, fval, position);
- position--;
-
- //NOTE again - pay attention! This is only valid if all entries are NOT negative! - if not, ask wether the current feature is greater than zero. If so, subtract the nrZeroIndices, if not do not
- double firstPart(0.0);
- //TODO in the "overnext" line there occurs the following error
- // Invalid read of size 8
- if (position >= 0)
- firstPart = (A[dim][position-nrZeroIndices]);
- else
- firstPart = 0.0;
-
- double secondPart( 0.0);
-
- if ( pf != NULL )
- fval = pf->f ( dim, fval );
-
- fval = fval * fval;
-
- if (position >= 0)
- secondPart = fval * (n-nrZeroIndices-(position+1));
- else //if x_d^* is smaller than every non-zero training example
- secondPart = fval * (n-nrZeroIndices);
-
- // but apply using the transformed one
- norm += firstPart + secondPart;
- }
- }
- void FastMinKernel::hikComputeKVNApproximationFast(const double *Tlookup, const Quantization & q, const NICE::SparseVector & xstar, double & norm) const
- {
- norm = 0.0;
- // runtime is O(d) if the quantizer is O(1)
- for (SparseVector::const_iterator i = xstar.begin(); i != xstar.end(); i++ )
- {
- int dim = i->first;
- double v = i->second;
- // we do not need a parameterized function here, since the quantizer works on the original feature values.
- // nonetheless, the lookup table was created using the parameterized function
- uint qBin = q.quantize(v);
-
- norm += Tlookup[dim*q.size() + qBin];
- }
- }
- void FastMinKernel::hikComputeKernelVector ( const NICE::SparseVector& xstar, NICE::Vector & kstar ) const
- {
- //init
- kstar.resize(this->n);
- kstar.set(0.0);
-
- //let's start :)
- for (SparseVector::const_iterator i = xstar.begin(); i != xstar.end(); i++)
- {
-
- int dim = i->first;
- double fval = i->second;
-
- int nrZeroIndices = X_sorted.getNumberOfZeroElementsPerDimension(dim);
- if ( nrZeroIndices == n ) {
- // all features are zero so let us ignore them completely
- continue;
- }
-
- int position;
- //where is the example x^z_i located in
- //the sorted array? -> perform binary search, runtime O(log(n))
- // search using the original value
- X_sorted.findFirstLargerInDimension(dim, fval, position);
- position--;
-
- //get the non-zero elements for this dimension
- const multimap< double, SortedVectorSparse<double>::dataelement> & nonzeroElements = X_sorted.getFeatureValues(dim).nonzeroElements();
-
- //run over the non-zero elements and add the corresponding entries to our kernel vector
- int count(nrZeroIndices);
- for ( SortedVectorSparse<double>::const_elementpointer i = nonzeroElements.begin(); i != nonzeroElements.end(); i++, count++ )
- {
- int origIndex(i->second.first); //orig index (i->second.second would be the transformed feature value)
- if (count <= position)
- kstar[origIndex] += i->first; //orig feature value
- else
- kstar[origIndex] += fval;
- }
- }
- }
- //////////////////////////////////////////
- // variance computation: non-sparse inputs
- //////////////////////////////////////////
- void FastMinKernel::hikComputeKVNApproximation(const NICE::VVector & A, const NICE::Vector & xstar, double & norm, const ParameterizedFunction *pf )
- {
- norm = 0.0;
- int dim ( 0 );
- for (Vector::const_iterator i = xstar.begin(); i != xstar.end(); i++, dim++)
- {
-
- double fval = *i;
-
- int nrZeroIndices = X_sorted.getNumberOfZeroElementsPerDimension(dim);
- if ( nrZeroIndices == n ) {
- // all features are zero so let us ignore them completely
- continue;
- }
- int position;
- //where is the example x^z_i located in
- //the sorted array? -> perform binary search, runtime O(log(n))
- // search using the original value
- X_sorted.findFirstLargerInDimension(dim, fval, position);
- position--;
-
- //NOTE again - pay attention! This is only valid if all entries are NOT negative! - if not, ask wether the current feature is greater than zero. If so, subtract the nrZeroIndices, if not do not
- double firstPart(0.0);
- //TODO in the "overnext" line there occurs the following error
- // Invalid read of size 8
- if (position >= 0)
- firstPart = (A[dim][position-nrZeroIndices]);
- else
- firstPart = 0.0;
-
- double secondPart( 0.0);
-
- if ( pf != NULL )
- fval = pf->f ( dim, fval );
-
- fval = fval * fval;
-
- if (position >= 0)
- secondPart = fval * (n-nrZeroIndices-(position+1));
- else //if x_d^* is smaller than every non-zero training example
- secondPart = fval * (n-nrZeroIndices);
-
- // but apply using the transformed one
- norm += firstPart + secondPart;
- }
- }
- void FastMinKernel::hikComputeKVNApproximationFast(const double *Tlookup, const Quantization & q, const NICE::Vector & xstar, double & norm) const
- {
- norm = 0.0;
- // runtime is O(d) if the quantizer is O(1)
- int dim ( 0 );
- for (Vector::const_iterator i = xstar.begin(); i != xstar.end(); i++, dim++ )
- {
- double v = *i;
- // we do not need a parameterized function here, since the quantizer works on the original feature values.
- // nonetheless, the lookup table was created using the parameterized function
- uint qBin = q.quantize(v);
-
- norm += Tlookup[dim*q.size() + qBin];
- }
- }
- void FastMinKernel::hikComputeKernelVector( const NICE::Vector & xstar, NICE::Vector & kstar) const
- {
- //init
- kstar.resize(this->n);
- kstar.set(0.0);
-
- //let's start :)
- int dim ( 0 );
- for (NICE::Vector::const_iterator i = xstar.begin(); i != xstar.end(); i++, dim++)
- {
-
- double fval = *i;
-
- int nrZeroIndices = X_sorted.getNumberOfZeroElementsPerDimension(dim);
- if ( nrZeroIndices == n ) {
- // all features are zero so let us ignore them completely
- continue;
- }
-
- int position;
- //where is the example x^z_i located in
- //the sorted array? -> perform binary search, runtime O(log(n))
- // search using the original value
- X_sorted.findFirstLargerInDimension(dim, fval, position);
- position--;
-
- //get the non-zero elements for this dimension
- const multimap< double, SortedVectorSparse<double>::dataelement> & nonzeroElements = X_sorted.getFeatureValues(dim).nonzeroElements();
-
- //run over the non-zero elements and add the corresponding entries to our kernel vector
- int count(nrZeroIndices);
- for ( SortedVectorSparse<double>::const_elementpointer i = nonzeroElements.begin(); i != nonzeroElements.end(); i++, count++ )
- {
- int origIndex(i->second.first); //orig index (i->second.second would be the transformed feature value)
- if (count <= position)
- kstar[origIndex] += i->first; //orig feature value
- else
- kstar[origIndex] += fval;
- }
- }
- }
- // ---------------------- STORE AND RESTORE FUNCTIONS ----------------------
- void FastMinKernel::restore ( std::istream & is, int format )
- {
- if (is.good())
- {
- is.precision (numeric_limits<double>::digits10 + 1);
-
- string tmp;
- is >> tmp; //class name
-
- is >> tmp;
- is >> n;
-
- is >> tmp;
- is >> d;
-
- is >> tmp;
- is >> noise;
-
- is >> tmp;
- int approxSchemeInt;
- is >> approxSchemeInt;
- setApproximationScheme(approxSchemeInt);
-
- X_sorted.restore(is,format);
- }
- else
- {
- std::cerr << "FastMinKernel::restore -- InStream not initialized - restoring not possible!" << std::endl;
- }
- }
- void FastMinKernel::store ( std::ostream & os, int format ) const
- {
- if (os.good())
- {
- os.precision (numeric_limits<double>::digits10 + 1);
- os << "FastMinKernel" << std::endl;
- os << "n: " << n << std::endl;
- os << "d: " << d << std::endl;
- os << "noise: " << noise << std::endl;
- os << "approxScheme: " << approxScheme << std::endl;
- X_sorted.store(os,format);
- }
- else
- {
- std::cerr << "OutStream not initialized - storing not possible!" << std::endl;
- }
- }
- void FastMinKernel::clear ()
- {
- std::cerr << "FastMinKernel clear-function called" << std::endl;
- }
- void FastMinKernel::setVerbose( const bool & _verbose)
- {
- verbose = _verbose;
- }
- bool FastMinKernel::getVerbose( ) const
- {
- return verbose;
- }
- void FastMinKernel::setDebug( const bool & _debug)
- {
- debug = _debug;
- X_sorted.setDebug( _debug );
- }
- bool FastMinKernel::getDebug( ) const
- {
- return debug;
- }
|