TestGPHIKOnlineLearnable.cpp 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747
  1. /**
  2. * @file TestGPHIKOnlineLearnable.cpp
  3. * @brief CppUnit-Testcase to verify that GPHIKClassifier methods herited from Persistent (store and restore) work as desired.
  4. * @author Alexander Freytag
  5. * @date 21-12-2013
  6. */
  7. #ifdef NICE_USELIB_CPPUNIT
  8. // STL includes
  9. #include <iostream>
  10. #include <vector>
  11. // NICE-core includes
  12. #include <core/basics/Config.h>
  13. #include <core/basics/Timer.h>
  14. // gp-hik-core includes
  15. #include "gp-hik-core/GPHIKClassifier.h"
  16. #include "gp-hik-core/GPHIKRawClassifier.h"
  17. #include "TestGPHIKOnlineLearnable.h"
  18. using namespace std; //C basics
  19. using namespace NICE; // nice-core
  20. const bool verboseStartEnd = true;
  21. const bool verbose = false;
  22. const bool writeClassifiersForVerification = false;
  23. CPPUNIT_TEST_SUITE_REGISTRATION( TestGPHIKOnlineLearnable );
  24. void TestGPHIKOnlineLearnable::setUp() {
  25. }
  26. void TestGPHIKOnlineLearnable::tearDown() {
  27. }
  28. void readData ( const std::string filename, NICE::Matrix & data, NICE::Vector & yBin, NICE::Vector & yMulti )
  29. {
  30. std::ifstream ifs ( filename.c_str() , ios::in );
  31. if ( ifs.good() )
  32. {
  33. ifs >> data;
  34. ifs >> yBin;
  35. ifs >> yMulti;
  36. ifs.close();
  37. }
  38. else
  39. {
  40. std::cerr << "Unable to read data from file " << filename << " -- aborting." << std::endl;
  41. CPPUNIT_ASSERT ( ifs.good() );
  42. }
  43. }
  44. void prepareLabelMappings (std::map< uint, uint > & mapClNoToIdxTrain,
  45. const GPHIKClassifier * classifier,
  46. std::map< uint,uint > & mapClNoToIdxTest,
  47. const NICE::Vector & yMultiTest
  48. )
  49. {
  50. // determine classes known during training and corresponding mapping
  51. // thereby allow for non-continous class labels
  52. std::set< uint > classesKnownTraining = classifier->getKnownClassNumbers();
  53. uint noClassesKnownTraining ( classesKnownTraining.size() );
  54. std::set< uint >::const_iterator clTrIt = classesKnownTraining.begin();
  55. for ( uint i=0; i < noClassesKnownTraining; i++, clTrIt++ )
  56. mapClNoToIdxTrain.insert ( std::pair< uint, uint > ( *clTrIt, i ) );
  57. // determine classes known during testing and corresponding mapping
  58. // thereby allow for non-continous class labels
  59. std::set< uint> classesKnownTest;
  60. classesKnownTest.clear();
  61. // determine which classes we have in our label vector
  62. // -> MATLAB: myClasses = unique(y);
  63. for ( NICE::Vector::const_iterator it = yMultiTest.begin(); it != yMultiTest.end(); it++ )
  64. {
  65. if ( classesKnownTest.find ( *it ) == classesKnownTest.end() )
  66. {
  67. classesKnownTest.insert ( *it );
  68. }
  69. }
  70. uint noClassesKnownTest ( classesKnownTest.size() );
  71. std::set< uint >::const_iterator clTestIt = classesKnownTest.begin();
  72. for ( uint i=0; i < noClassesKnownTest; i++, clTestIt++ )
  73. mapClNoToIdxTest.insert ( std::pair< uint,uint > ( *clTestIt, i ) );
  74. }
  75. void evaluateClassifier ( NICE::Matrix & confusionMatrix,
  76. const NICE::GPHIKClassifier * classifier,
  77. const NICE::Matrix & data,
  78. const NICE::Vector & yMulti,
  79. const std::map< uint,uint > & mapClNoToIdxTrain,
  80. const std::map< uint,uint > & mapClNoToIdxTest
  81. )
  82. {
  83. int i_loopEnd ( (int)data.rows() );
  84. for (int i = 0; i < i_loopEnd ; i++)
  85. {
  86. NICE::Vector example ( data.getRow(i) );
  87. NICE::SparseVector scores;
  88. uint result;
  89. // classify with incrementally trained classifier
  90. classifier->classify( &example, result, scores );
  91. confusionMatrix( mapClNoToIdxTrain.find(result)->second, mapClNoToIdxTest.find(yMulti[i])->second ) += 1.0;
  92. }
  93. }
  94. void evaluateClassifierRaw ( NICE::Matrix & confusionMatrix,
  95. const NICE::GPHIKRawClassifier * classifier,
  96. const NICE::Matrix & data,
  97. const NICE::Vector & yMulti,
  98. const std::map< uint,uint > & mapClNoToIdxTrain,
  99. const std::map< uint,uint > & mapClNoToIdxTest
  100. )
  101. {
  102. int i_loopEnd ( (int)data.rows() );
  103. for (int i = 0; i < i_loopEnd ; i++)
  104. {
  105. NICE::Vector example_nonsparse ( data.getRow(i) );
  106. NICE::SparseVector example (example_nonsparse);
  107. NICE::SparseVector scores;
  108. uint result;
  109. // classify with incrementally trained classifier
  110. classifier->classify( &example, result, scores );
  111. uint gtlabel = mapClNoToIdxTest.find(yMulti[i])->second;
  112. uint predlabel = mapClNoToIdxTrain.find(result)->second;
  113. confusionMatrix( gtlabel, predlabel ) += 1.0;
  114. }
  115. }
  116. void compareClassifierOutputs ( const NICE::GPHIKClassifier * classifier,
  117. const NICE::GPHIKClassifier * classifierScratch,
  118. const NICE::Matrix & data
  119. )
  120. {
  121. int i_loopEnd ( (int)data.rows() );
  122. for (int i = 0; i < i_loopEnd ; i++)
  123. {
  124. NICE::Vector example ( data.getRow(i) );
  125. NICE::SparseVector scores;
  126. uint result;
  127. // classify with incrementally trained classifier
  128. classifier->classify( &example, result, scores );
  129. NICE::SparseVector scoresScratch;
  130. uint resultScratch;
  131. classifierScratch->classify( &example, resultScratch, scoresScratch );
  132. bool equal(true);
  133. NICE::SparseVector::const_iterator itScores = scores.begin();
  134. NICE::SparseVector::const_iterator itScoresScratch = scoresScratch.begin();
  135. for ( ; itScores != scores.end(); itScores++, itScoresScratch++)
  136. {
  137. if ( fabs( itScores->second - itScores->second ) > 10e-3)
  138. {
  139. std::cerr << " itScores->second: " << itScores->second << " itScores->second: " << itScores->second << std::endl;
  140. equal = false;
  141. break;
  142. }
  143. }
  144. CPPUNIT_ASSERT_EQUAL ( equal, true );
  145. }
  146. }
  147. void TestGPHIKOnlineLearnable::testOnlineLearningStartEmpty()
  148. {
  149. if (verboseStartEnd)
  150. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningStartEmpty ===================== " << std::endl;
  151. NICE::Config conf;
  152. conf.sB ( "GPHIKClassifier", "eig_verbose", false);
  153. conf.sS ( "GPHIKClassifier", "optimization_method", "downhillsimplex");
  154. std::string s_trainData = conf.gS( "main", "trainData", "toyExampleSmallScaleTrain.data" );
  155. //------------- read the training data --------------
  156. NICE::Matrix dataTrain;
  157. NICE::Vector yBinTrain;
  158. NICE::Vector yMultiTrain;
  159. readData ( s_trainData, dataTrain, yBinTrain, yMultiTrain );
  160. //----------------- convert data to sparse data structures ---------
  161. std::vector< const NICE::SparseVector *> examplesTrain;
  162. examplesTrain.resize( dataTrain.rows() );
  163. std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin();
  164. for (int i = 0; i < (int)dataTrain.rows(); i++, exTrainIt++)
  165. {
  166. *exTrainIt = new NICE::SparseVector( dataTrain.getRow(i) );
  167. }
  168. //create classifier object
  169. NICE::GPHIKClassifier * classifier;
  170. classifier = new NICE::GPHIKClassifier ( &conf );
  171. bool performOptimizationAfterIncrement ( true );
  172. // add training samples, but without running training method first
  173. classifier->addMultipleExamples ( examplesTrain,yMultiTrain, performOptimizationAfterIncrement );
  174. // create second object trained in the standard way
  175. NICE::GPHIKClassifier * classifierScratch = new NICE::GPHIKClassifier ( &conf );
  176. classifierScratch->train ( examplesTrain, yMultiTrain );
  177. // TEST both classifiers to produce equal results
  178. //------------- read the test data --------------
  179. NICE::Matrix dataTest;
  180. NICE::Vector yBinTest;
  181. NICE::Vector yMultiTest;
  182. std::string s_testData = conf.gS( "main", "testData", "toyExampleTest.data" );
  183. readData ( s_testData, dataTest, yBinTest, yMultiTest );
  184. // ------------------------------------------
  185. // ------------- PREPARATION --------------
  186. // ------------------------------------------
  187. // determine classes known during training/testing and corresponding mapping
  188. // thereby allow for non-continous class labels
  189. std::map< uint,uint > mapClNoToIdxTrain;
  190. std::map< uint,uint > mapClNoToIdxTest;
  191. prepareLabelMappings (mapClNoToIdxTrain, classifier, mapClNoToIdxTest, yMultiTest);
  192. NICE::Matrix confusionMatrix ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  193. NICE::Matrix confusionMatrixScratch ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  194. // ------------------------------------------
  195. // ------------- CLASSIFICATION --------------
  196. // ------------------------------------------
  197. evaluateClassifier ( confusionMatrix, classifier, dataTest, yMultiTest,
  198. mapClNoToIdxTrain,mapClNoToIdxTest );
  199. evaluateClassifier ( confusionMatrixScratch, classifierScratch, dataTest, yMultiTest,
  200. mapClNoToIdxTrain,mapClNoToIdxTest );
  201. // post-process confusion matrices
  202. confusionMatrix.normalizeColumnsL1();
  203. double arr ( confusionMatrix.trace()/confusionMatrix.cols() );
  204. confusionMatrixScratch.normalizeColumnsL1();
  205. double arrScratch ( confusionMatrixScratch.trace()/confusionMatrixScratch.cols() );
  206. if ( verbose )
  207. {
  208. std::cerr << "confusionMatrix: " << confusionMatrix << std::endl;
  209. std::cerr << "confusionMatrixScratch: " << confusionMatrixScratch << std::endl;
  210. }
  211. CPPUNIT_ASSERT_DOUBLES_EQUAL( arr, arrScratch, 1e-8);
  212. // don't waste memory
  213. delete classifier;
  214. delete classifierScratch;
  215. for (std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin(); exTrainIt != examplesTrain.end(); exTrainIt++)
  216. {
  217. delete *exTrainIt;
  218. }
  219. if (verboseStartEnd)
  220. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningStartEmpty done ===================== " << std::endl;
  221. }
  222. void TestGPHIKOnlineLearnable::testOnlineLearningOCCtoBinary()
  223. {
  224. if (verboseStartEnd)
  225. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningOCCtoBinary ===================== " << std::endl;
  226. NICE::Config conf;
  227. conf.sB ( "GPHIKClassifier", "eig_verbose", false);
  228. conf.sS ( "GPHIKClassifier", "optimization_method", "downhillsimplex");
  229. conf.sB ( "GPHIKClassifier", "verbose", true);
  230. std::string s_trainData = conf.gS( "main", "trainData", "toyExampleSmallScaleTrain.data" );
  231. //------------- read the training data --------------
  232. NICE::Matrix dataTrain;
  233. NICE::Vector yBinTrain;
  234. NICE::Vector yMultiTrain;
  235. readData ( s_trainData, dataTrain, yBinTrain, yMultiTrain );
  236. //----------------- convert data to sparse data structures ---------
  237. std::vector< const NICE::SparseVector *> examplesTrain;
  238. std::vector< const NICE::SparseVector *> examplesTrainPlus;
  239. std::vector< const NICE::SparseVector *> examplesTrainMinus;
  240. examplesTrain.resize( dataTrain.rows() );
  241. // to check whether non-consecutive and even wrongly odered class numbers work as well
  242. int clNoFirst ( 2 );
  243. int clNoSecond ( 0 );
  244. std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin();
  245. for (int i = 0; i < (int)dataTrain.rows(); i++, exTrainIt++)
  246. {
  247. *exTrainIt = new NICE::SparseVector( dataTrain.getRow(i) );
  248. if ( yBinTrain[i] == 1 )
  249. {
  250. examplesTrainPlus.push_back ( *exTrainIt );
  251. yBinTrain[i] = clNoFirst;
  252. }
  253. else
  254. {
  255. examplesTrainMinus.push_back ( *exTrainIt );
  256. yBinTrain[i] = clNoSecond;
  257. }
  258. }
  259. NICE::Vector yBinPlus ( examplesTrainPlus.size(), clNoFirst ) ;
  260. NICE::Vector yBinMinus ( examplesTrainMinus.size(), clNoSecond );
  261. //create classifier object
  262. NICE::GPHIKClassifier * classifier;
  263. classifier = new NICE::GPHIKClassifier ( &conf );
  264. bool performOptimizationAfterIncrement ( true );
  265. // training with examples for positive class only
  266. classifier->train ( examplesTrainPlus, yBinPlus );
  267. // add samples for negative class, thereby going from OCC to binary setting
  268. classifier->addMultipleExamples ( examplesTrainMinus, yBinMinus, performOptimizationAfterIncrement );
  269. // create second object trained in the standard way
  270. NICE::GPHIKClassifier * classifierScratch = new NICE::GPHIKClassifier ( &conf );
  271. classifierScratch->train ( examplesTrain, yBinTrain );
  272. NICE::GPHIKRawClassifier * classifierScratchRaw = new NICE::GPHIKRawClassifier ( &conf );
  273. classifierScratchRaw->train ( examplesTrain, yBinTrain );
  274. // TEST both classifiers to produce equal results
  275. //------------- read the test data --------------
  276. NICE::Matrix dataTest;
  277. NICE::Vector yBinTest;
  278. NICE::Vector yMultiTest;
  279. std::string s_testData = conf.gS( "main", "testData", "toyExampleTest.data" );
  280. readData ( s_testData, dataTest, yBinTest, yMultiTest );
  281. // ------------------------------------------
  282. // ------------- PREPARATION --------------
  283. // ------------------------------------------
  284. // determine classes known during training/testing and corresponding mapping
  285. // thereby allow for non-continous class labels
  286. std::map< uint,uint > mapClNoToIdxTrain;
  287. std::map< uint,uint > mapClNoToIdxTest;
  288. prepareLabelMappings (mapClNoToIdxTrain, classifier, mapClNoToIdxTest, yMultiTest);
  289. NICE::Matrix confusionMatrix ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  290. NICE::Matrix confusionMatrixScratch ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  291. NICE::Matrix confusionMatrixScratchRaw ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  292. // ------------------------------------------
  293. // ------------- CLASSIFICATION --------------
  294. // ------------------------------------------
  295. evaluateClassifier ( confusionMatrix, classifier, dataTest, yBinTest,
  296. mapClNoToIdxTrain, mapClNoToIdxTest );
  297. evaluateClassifier ( confusionMatrixScratch, classifierScratch, dataTest, yBinTest,
  298. mapClNoToIdxTrain, mapClNoToIdxTest );
  299. evaluateClassifierRaw ( confusionMatrixScratchRaw, classifierScratchRaw, dataTest, yBinTest,
  300. mapClNoToIdxTrain, mapClNoToIdxTest );
  301. // post-process confusion matrices
  302. confusionMatrix.normalizeColumnsL1();
  303. double arr ( confusionMatrix.trace()/confusionMatrix.cols() );
  304. confusionMatrixScratch.normalizeColumnsL1();
  305. double arrScratch ( confusionMatrixScratch.trace()/confusionMatrixScratch.cols() );
  306. confusionMatrixScratchRaw.normalizeColumnsL1();
  307. double arrScratchRaw ( confusionMatrixScratchRaw.trace()/confusionMatrixScratchRaw.cols() );
  308. if ( verbose )
  309. {
  310. std::cerr << "confusionMatrix: " << confusionMatrix << std::endl;
  311. std::cerr << "confusionMatrixScratch: " << confusionMatrixScratch << std::endl;
  312. std::cerr << "confusionMatrixScratchRaw: " << confusionMatrixScratchRaw << std::endl;
  313. }
  314. CPPUNIT_ASSERT_DOUBLES_EQUAL( arr, arrScratch, 1e-8);
  315. CPPUNIT_ASSERT_DOUBLES_EQUAL( arrScratch, arrScratchRaw, 1e-8);
  316. // don't waste memory
  317. delete classifier;
  318. delete classifierScratch;
  319. delete classifierScratchRaw;
  320. for (std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin(); exTrainIt != examplesTrain.end(); exTrainIt++)
  321. {
  322. delete *exTrainIt;
  323. }
  324. if (verboseStartEnd)
  325. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningOCCtoBinary done ===================== " << std::endl;
  326. }
  327. void TestGPHIKOnlineLearnable::testOnlineLearningBinarytoMultiClass()
  328. {
  329. if (verboseStartEnd)
  330. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningBinarytoMultiClass ===================== " << std::endl;
  331. NICE::Config conf;
  332. conf.sB ( "GPHIKClassifier", "eig_verbose", false);
  333. conf.sS ( "GPHIKClassifier", "optimization_method", "downhillsimplex");
  334. // conf.sS ( "GPHIKClassifier", "optimization_method", "none");
  335. std::string s_trainData = conf.gS( "main", "trainData", "toyExampleSmallScaleTrain.data" );
  336. //------------- read the training data --------------
  337. NICE::Matrix dataTrain;
  338. NICE::Vector yBinTrain;
  339. NICE::Vector yMultiTrain;
  340. readData ( s_trainData, dataTrain, yBinTrain, yMultiTrain );
  341. //----------------- convert data to sparse data structures ---------
  342. std::vector< const NICE::SparseVector *> examplesTrain;
  343. std::vector< const NICE::SparseVector *> examplesTrain12;
  344. std::vector< const NICE::SparseVector *> examplesTrain3;
  345. NICE::Vector yMulti12 ( yMultiTrain.size(), 1 ) ;
  346. NICE::Vector yMulti3 ( yMultiTrain.size(), 1 ) ;
  347. int cnt12 ( 0 );
  348. int cnt3 ( 0 );
  349. examplesTrain.resize( dataTrain.rows() );
  350. std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin();
  351. for (int i = 0; i < (int)dataTrain.rows(); i++, exTrainIt++)
  352. {
  353. *exTrainIt = new NICE::SparseVector( dataTrain.getRow(i) );
  354. if ( ( yMultiTrain[i] == 0 ) || ( yMultiTrain[i] == 1 ) )
  355. {
  356. examplesTrain12.push_back ( *exTrainIt );
  357. yMulti12[ cnt12 ] = yMultiTrain[i];
  358. cnt12++;
  359. }
  360. else
  361. {
  362. examplesTrain3.push_back ( *exTrainIt );
  363. yMulti3[cnt3] = 2;
  364. cnt3++;
  365. }
  366. }
  367. yMulti12.resize ( examplesTrain12.size() );
  368. yMulti3.resize ( examplesTrain3.size() );
  369. //create classifier object
  370. NICE::GPHIKClassifier * classifier;
  371. classifier = new NICE::GPHIKClassifier ( &conf );
  372. bool performOptimizationAfterIncrement ( true );
  373. // training with examples for first and second class only
  374. classifier->train ( examplesTrain12, yMulti12 );
  375. // add samples for third class, thereby going from binary to multi-class setting
  376. classifier->addMultipleExamples ( examplesTrain3, yMulti3, performOptimizationAfterIncrement );
  377. // create second object trained in the standard way
  378. NICE::GPHIKClassifier * classifierScratch = new NICE::GPHIKClassifier ( &conf );
  379. classifierScratch->train ( examplesTrain, yMultiTrain );
  380. // TEST both classifiers to produce equal results
  381. //------------- read the test data --------------
  382. NICE::Matrix dataTest;
  383. NICE::Vector yBinTest;
  384. NICE::Vector yMultiTest;
  385. std::string s_testData = conf.gS( "main", "testData", "toyExampleTest.data" );
  386. readData ( s_testData, dataTest, yBinTest, yMultiTest );
  387. // ------------------------------------------
  388. // ------------- PREPARATION --------------
  389. // ------------------------------------------
  390. // determine classes known during training/testing and corresponding mapping
  391. // thereby allow for non-continous class labels
  392. std::map< uint,uint > mapClNoToIdxTrain;
  393. std::map< uint,uint > mapClNoToIdxTest;
  394. prepareLabelMappings (mapClNoToIdxTrain, classifier, mapClNoToIdxTest, yMultiTest);
  395. NICE::Matrix confusionMatrix ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  396. NICE::Matrix confusionMatrixScratch ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  397. // ------------------------------------------
  398. // ------------- CLASSIFICATION --------------
  399. // ------------------------------------------
  400. compareClassifierOutputs ( classifier, classifierScratch, dataTest );
  401. evaluateClassifier ( confusionMatrix, classifier, dataTest, yMultiTest,
  402. mapClNoToIdxTrain,mapClNoToIdxTest );
  403. evaluateClassifier ( confusionMatrixScratch, classifierScratch, dataTest, yMultiTest,
  404. mapClNoToIdxTrain,mapClNoToIdxTest );
  405. // post-process confusion matrices
  406. confusionMatrix.normalizeColumnsL1();
  407. double arr ( confusionMatrix.trace()/confusionMatrix.cols() );
  408. confusionMatrixScratch.normalizeColumnsL1();
  409. double arrScratch ( confusionMatrixScratch.trace()/confusionMatrixScratch.cols() );
  410. if ( verbose )
  411. {
  412. std::cerr << "confusionMatrix: " << confusionMatrix << std::endl;
  413. std::cerr << "confusionMatrixScratch: " << confusionMatrixScratch << std::endl;
  414. }
  415. CPPUNIT_ASSERT_DOUBLES_EQUAL( arr, arrScratch, 1e-8);
  416. // don't waste memory
  417. delete classifier;
  418. delete classifierScratch;
  419. for (std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin(); exTrainIt != examplesTrain.end(); exTrainIt++)
  420. {
  421. delete *exTrainIt;
  422. }
  423. if (verboseStartEnd)
  424. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningBinarytoMultiClass done ===================== " << std::endl;
  425. }
  426. void TestGPHIKOnlineLearnable::testOnlineLearningMultiClass()
  427. {
  428. if (verboseStartEnd)
  429. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningMultiClass ===================== " << std::endl;
  430. NICE::Config conf;
  431. conf.sB ( "GPHIKClassifier", "eig_verbose", false);
  432. conf.sS ( "GPHIKClassifier", "optimization_method", "downhillsimplex");//downhillsimplex greedy
  433. std::string s_trainData = conf.gS( "main", "trainData", "toyExampleSmallScaleTrain.data" );
  434. //------------- read the training data --------------
  435. NICE::Matrix dataTrain;
  436. NICE::Vector yBinTrain;
  437. NICE::Vector yMultiTrain;
  438. readData ( s_trainData, dataTrain, yBinTrain, yMultiTrain );
  439. //----------------- convert data to sparse data structures ---------
  440. std::vector< const NICE::SparseVector *> examplesTrain;
  441. examplesTrain.resize( dataTrain.rows()-1 );
  442. std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin();
  443. for (int i = 0; i < (int)dataTrain.rows()-1; i++, exTrainIt++)
  444. {
  445. *exTrainIt = new NICE::SparseVector( dataTrain.getRow(i) );
  446. }
  447. // TRAIN INITIAL CLASSIFIER FROM SCRATCH
  448. NICE::GPHIKClassifier * classifier;
  449. classifier = new NICE::GPHIKClassifier ( &conf );
  450. //use all but the first example for training and add the first one lateron
  451. NICE::Vector yMultiRelevantTrain ( yMultiTrain.getRangeRef( 0, yMultiTrain.size()-2 ) );
  452. classifier->train ( examplesTrain , yMultiRelevantTrain );
  453. // RUN INCREMENTAL LEARNING
  454. bool performOptimizationAfterIncrement ( true );
  455. NICE::SparseVector * exampleToAdd = new NICE::SparseVector ( dataTrain.getRow( (int)dataTrain.rows()-1 ) );
  456. classifier->addExample ( exampleToAdd, yMultiTrain[ (int)dataTrain.rows()-2 ], performOptimizationAfterIncrement );
  457. if ( verbose )
  458. std::cerr << "label of example to add: " << yMultiTrain[ (int)dataTrain.rows()-1 ] << std::endl;
  459. // TRAIN SECOND CLASSIFIER FROM SCRATCH USING THE SAME OVERALL AMOUNT OF EXAMPLES
  460. examplesTrain.push_back( exampleToAdd );
  461. NICE::GPHIKClassifier * classifierScratch = new NICE::GPHIKClassifier ( &conf );
  462. classifierScratch->train ( examplesTrain, yMultiTrain );
  463. if ( verbose )
  464. std::cerr << "trained both classifiers - now start evaluating them" << std::endl;
  465. // TEST that both classifiers produce equal store-files
  466. if ( writeClassifiersForVerification )
  467. {
  468. std::string s_destination_save_IL ( "myClassifierIL.txt" );
  469. std::filebuf fbOut;
  470. fbOut.open ( s_destination_save_IL.c_str(), ios::out );
  471. std::ostream os (&fbOut);
  472. //
  473. classifier->store( os );
  474. //
  475. fbOut.close();
  476. std::string s_destination_save_scratch ( "myClassifierScratch.txt" );
  477. std::filebuf fbOutScratch;
  478. fbOutScratch.open ( s_destination_save_scratch.c_str(), ios::out );
  479. std::ostream osScratch (&fbOutScratch);
  480. //
  481. classifierScratch->store( osScratch );
  482. //
  483. fbOutScratch.close();
  484. }
  485. // TEST both classifiers to produce equal results
  486. //------------- read the test data --------------
  487. NICE::Matrix dataTest;
  488. NICE::Vector yBinTest;
  489. NICE::Vector yMultiTest;
  490. std::string s_testData = conf.gS( "main", "testData", "toyExampleTest.data" );
  491. readData ( s_testData, dataTest, yBinTest, yMultiTest );
  492. // ------------------------------------------
  493. // ------------- PREPARATION --------------
  494. // ------------------------------------------
  495. // determine classes known during training/testing and corresponding mapping
  496. // thereby allow for non-continous class labels
  497. std::map< uint,uint > mapClNoToIdxTrain;
  498. std::map< uint,uint > mapClNoToIdxTest;
  499. prepareLabelMappings (mapClNoToIdxTrain, classifier, mapClNoToIdxTest, yMultiTest);
  500. NICE::Matrix confusionMatrix ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  501. NICE::Matrix confusionMatrixScratch ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  502. // ------------------------------------------
  503. // ------------- CLASSIFICATION --------------
  504. // ------------------------------------------
  505. evaluateClassifier ( confusionMatrix, classifier, dataTest, yMultiTest,
  506. mapClNoToIdxTrain,mapClNoToIdxTest );
  507. evaluateClassifier ( confusionMatrixScratch, classifierScratch, dataTest, yMultiTest,
  508. mapClNoToIdxTrain,mapClNoToIdxTest );
  509. // post-process confusion matrices
  510. confusionMatrix.normalizeColumnsL1();
  511. double arr ( confusionMatrix.trace()/confusionMatrix.cols() );
  512. confusionMatrixScratch.normalizeColumnsL1();
  513. double arrScratch ( confusionMatrixScratch.trace()/confusionMatrixScratch.cols() );
  514. if ( verbose )
  515. {
  516. std::cerr << "confusionMatrix: " << confusionMatrix << std::endl;
  517. std::cerr << "confusionMatrixScratch: " << confusionMatrixScratch << std::endl;
  518. }
  519. CPPUNIT_ASSERT_DOUBLES_EQUAL( arr, arrScratch, 1e-8);
  520. // don't waste memory
  521. delete classifier;
  522. delete classifierScratch;
  523. for (std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin(); exTrainIt != examplesTrain.end(); exTrainIt++)
  524. {
  525. delete *exTrainIt;
  526. }
  527. if (verboseStartEnd)
  528. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningMultiClass done ===================== " << std::endl;
  529. }
  530. #endif