123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657 |
- myData = [ 0.2; 0.8];
- % create l1-normalized 'histograms'
- myData = cat(2,myData , 1-myData)';
- myLabels = [1,2];
- % init new GPHIKClassifier object
- myGPHIKClassifier = GPHIKClassifier ( 'verbose', 'false', ...
- 'optimization_method', 'none', 'varianceApproximation', 'approximate_fine',...
- 'nrOfEigenvaluesToConsiderForVarApprox',2,...
- 'uncertaintyPredictionForClassification', true ...
- );
- % run train method
- myGPHIKClassifier.train( myData, myLabels );
- myDataTest = 0:0.01:1;
- % create l1-normalized 'histograms'
- myDataTest = cat(1, myDataTest, 1-myDataTest)';
- scores = zeros(size(myDataTest,1),1);
- uncertainties = zeros(size(myDataTest,1),1);
- for i=1:size(myDataTest,1)
- example = myDataTest(i,:);
- [ classNoEst, score, uncertainties(i)] = myGPHIKClassifier.classify( example );
- scores(i) = score(1);
- end
- figure;
- hold on;
- %#initialize x array
- x=0:0.01:1;
- %#create first curve
- uncLower=scores-uncertainties;
- %#create second curve
- uncUpper=scores+uncertainties;
- %#create polygon-like x values for plotting
- X=[x,fliplr(x)];
- %# concatenate y-values accordingly
- Y=[uncLower',fliplr(uncUpper')];
- %#plot filled area
- fill(X,Y,'y');
- plot ( x,scores,'rx');
- % clean up and delete object
- myGPHIKClassifier.delete();
- clear ( 'myGPHIKClassifier' );
|