TestGPHIKOnlineLearnable.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655
  1. /**
  2. * @file TestGPHIKOnlineLearnable.cpp
  3. * @brief CppUnit-Testcase to verify that GPHIKClassifier methods herited from Persistent (store and restore) work as desired.
  4. * @author Alexander Freytag
  5. * @date 21-12-2013
  6. */
  7. #ifdef NICE_USELIB_CPPUNIT
  8. // STL includes
  9. #include <iostream>
  10. #include <vector>
  11. // NICE-core includes
  12. #include <core/basics/Config.h>
  13. #include <core/basics/Timer.h>
  14. // gp-hik-core includes
  15. #include "gp-hik-core/GPHIKClassifier.h"
  16. #include "TestGPHIKOnlineLearnable.h"
  17. using namespace std; //C basics
  18. using namespace NICE; // nice-core
  19. const bool verboseStartEnd = true;
  20. const bool verbose = false;
  21. const bool writeClassifiersForVerification = false;
  22. CPPUNIT_TEST_SUITE_REGISTRATION( TestGPHIKOnlineLearnable );
  23. void TestGPHIKOnlineLearnable::setUp() {
  24. }
  25. void TestGPHIKOnlineLearnable::tearDown() {
  26. }
  27. void readData ( const std::string filename, NICE::Matrix & data, NICE::Vector & yBin, NICE::Vector & yMulti )
  28. {
  29. std::ifstream ifs ( filename.c_str() , ios::in );
  30. if ( ifs.good() )
  31. {
  32. ifs >> data;
  33. ifs >> yBin;
  34. ifs >> yMulti;
  35. ifs.close();
  36. }
  37. else
  38. {
  39. std::cerr << "Unable to read data from file " << filename << " -- aborting." << std::endl;
  40. CPPUNIT_ASSERT ( ifs.good() );
  41. }
  42. }
  43. void prepareLabelMappings (std::map<int,int> & mapClNoToIdxTrain, const GPHIKClassifier * classifier, std::map<int,int> & mapClNoToIdxTest, const NICE::Vector & yMultiTest)
  44. {
  45. // determine classes known during training and corresponding mapping
  46. // thereby allow for non-continous class labels
  47. std::set<int> classesKnownTraining = classifier->getKnownClassNumbers();
  48. int noClassesKnownTraining ( classesKnownTraining.size() );
  49. std::set<int>::const_iterator clTrIt = classesKnownTraining.begin();
  50. for ( int i=0; i < noClassesKnownTraining; i++, clTrIt++ )
  51. mapClNoToIdxTrain.insert ( std::pair<int,int> ( *clTrIt, i ) );
  52. // determine classes known during testing and corresponding mapping
  53. // thereby allow for non-continous class labels
  54. std::set<int> classesKnownTest;
  55. classesKnownTest.clear();
  56. // determine which classes we have in our label vector
  57. // -> MATLAB: myClasses = unique(y);
  58. for ( NICE::Vector::const_iterator it = yMultiTest.begin(); it != yMultiTest.end(); it++ )
  59. {
  60. if ( classesKnownTest.find ( *it ) == classesKnownTest.end() )
  61. {
  62. classesKnownTest.insert ( *it );
  63. }
  64. }
  65. int noClassesKnownTest ( classesKnownTest.size() );
  66. std::set<int>::const_iterator clTestIt = classesKnownTest.begin();
  67. for ( int i=0; i < noClassesKnownTest; i++, clTestIt++ )
  68. mapClNoToIdxTest.insert ( std::pair<int,int> ( *clTestIt, i ) );
  69. }
  70. void evaluateClassifier ( NICE::Matrix & confusionMatrix,
  71. const NICE::GPHIKClassifier * classifier,
  72. const NICE::Matrix & data,
  73. const NICE::Vector & yMulti,
  74. const std::map<int,int> & mapClNoToIdxTrain,
  75. const std::map<int,int> & mapClNoToIdxTest
  76. )
  77. {
  78. int i_loopEnd ( (int)data.rows() );
  79. for (int i = 0; i < i_loopEnd ; i++)
  80. {
  81. NICE::Vector example ( data.getRow(i) );
  82. NICE::SparseVector scores;
  83. int result;
  84. // classify with incrementally trained classifier
  85. classifier->classify( &example, result, scores );
  86. confusionMatrix( mapClNoToIdxTrain.find(result)->second, mapClNoToIdxTest.find(yMulti[i])->second ) += 1.0;
  87. }
  88. }
  89. void TestGPHIKOnlineLearnable::testOnlineLearningStartEmpty()
  90. {
  91. if (verboseStartEnd)
  92. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningStartEmpty ===================== " << std::endl;
  93. NICE::Config conf;
  94. conf.sB ( "GPHIKClassifier", "eig_verbose", false);
  95. conf.sS ( "GPHIKClassifier", "optimization_method", "downhillsimplex");
  96. std::string s_trainData = conf.gS( "main", "trainData", "toyExampleSmallScaleTrain.data" );
  97. //------------- read the training data --------------
  98. NICE::Matrix dataTrain;
  99. NICE::Vector yBinTrain;
  100. NICE::Vector yMultiTrain;
  101. readData ( s_trainData, dataTrain, yBinTrain, yMultiTrain );
  102. //----------------- convert data to sparse data structures ---------
  103. std::vector< const NICE::SparseVector *> examplesTrain;
  104. examplesTrain.resize( dataTrain.rows() );
  105. std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin();
  106. for (int i = 0; i < (int)dataTrain.rows(); i++, exTrainIt++)
  107. {
  108. *exTrainIt = new NICE::SparseVector( dataTrain.getRow(i) );
  109. }
  110. //create classifier object
  111. NICE::GPHIKClassifier * classifier;
  112. classifier = new NICE::GPHIKClassifier ( &conf );
  113. bool performOptimizationAfterIncrement ( false );
  114. // add training samples, but without running training method first
  115. classifier->addMultipleExamples ( examplesTrain,yMultiTrain, performOptimizationAfterIncrement );
  116. // create second object trained in the standard way
  117. NICE::GPHIKClassifier * classifierScratch = new NICE::GPHIKClassifier ( &conf );
  118. classifierScratch->train ( examplesTrain, yMultiTrain );
  119. // TEST both classifiers to produce equal results
  120. //------------- read the test data --------------
  121. NICE::Matrix dataTest;
  122. NICE::Vector yBinTest;
  123. NICE::Vector yMultiTest;
  124. std::string s_testData = conf.gS( "main", "testData", "toyExampleTest.data" );
  125. readData ( s_testData, dataTest, yBinTest, yMultiTest );
  126. // ------------------------------------------
  127. // ------------- PREPARATION --------------
  128. // ------------------------------------------
  129. // determine classes known during training/testing and corresponding mapping
  130. // thereby allow for non-continous class labels
  131. std::map<int,int> mapClNoToIdxTrain;
  132. std::map<int,int> mapClNoToIdxTest;
  133. prepareLabelMappings (mapClNoToIdxTrain, classifier, mapClNoToIdxTest, yMultiTest);
  134. NICE::Matrix confusionMatrix ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  135. NICE::Matrix confusionMatrixScratch ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  136. // ------------------------------------------
  137. // ------------- CLASSIFICATION --------------
  138. // ------------------------------------------
  139. evaluateClassifier ( confusionMatrix, classifier, dataTest, yMultiTest,
  140. mapClNoToIdxTrain,mapClNoToIdxTest );
  141. evaluateClassifier ( confusionMatrixScratch, classifierScratch, dataTest, yMultiTest,
  142. mapClNoToIdxTrain,mapClNoToIdxTest );
  143. // post-process confusion matrices
  144. confusionMatrix.normalizeColumnsL1();
  145. double arr ( confusionMatrix.trace()/confusionMatrix.cols() );
  146. confusionMatrixScratch.normalizeColumnsL1();
  147. double arrScratch ( confusionMatrixScratch.trace()/confusionMatrixScratch.cols() );
  148. if ( verbose )
  149. {
  150. std::cerr << "confusionMatrix: " << confusionMatrix << std::endl;
  151. std::cerr << "confusionMatrixScratch: " << confusionMatrixScratch << std::endl;
  152. }
  153. CPPUNIT_ASSERT_DOUBLES_EQUAL( arr, arrScratch, 1e-8);
  154. // don't waste memory
  155. delete classifier;
  156. delete classifierScratch;
  157. for (std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin(); exTrainIt != examplesTrain.end(); exTrainIt++)
  158. {
  159. delete *exTrainIt;
  160. }
  161. if (verboseStartEnd)
  162. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningStartEmpty done ===================== " << std::endl;
  163. }
  164. void TestGPHIKOnlineLearnable::testOnlineLearningOCCtoBinary()
  165. {
  166. if (verboseStartEnd)
  167. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningOCCtoBinary ===================== " << std::endl;
  168. NICE::Config conf;
  169. conf.sB ( "GPHIKClassifier", "eig_verbose", false);
  170. conf.sS ( "GPHIKClassifier", "optimization_method", "downhillsimplex");
  171. std::string s_trainData = conf.gS( "main", "trainData", "toyExampleSmallScaleTrain.data" );
  172. //------------- read the training data --------------
  173. NICE::Matrix dataTrain;
  174. NICE::Vector yBinTrain;
  175. NICE::Vector yMultiTrain;
  176. readData ( s_trainData, dataTrain, yBinTrain, yMultiTrain );
  177. //----------------- convert data to sparse data structures ---------
  178. std::vector< const NICE::SparseVector *> examplesTrain;
  179. std::vector< const NICE::SparseVector *> examplesTrainPlus;
  180. std::vector< const NICE::SparseVector *> examplesTrainMinus;
  181. examplesTrain.resize( dataTrain.rows() );
  182. std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin();
  183. for (int i = 0; i < (int)dataTrain.rows(); i++, exTrainIt++)
  184. {
  185. *exTrainIt = new NICE::SparseVector( dataTrain.getRow(i) );
  186. if ( yBinTrain[i] == 1 )
  187. {
  188. examplesTrainPlus.push_back ( *exTrainIt );
  189. }
  190. else
  191. {
  192. examplesTrainMinus.push_back ( *exTrainIt );
  193. }
  194. }
  195. NICE::Vector yBinPlus ( examplesTrainPlus.size(), 1 ) ;
  196. NICE::Vector yBinMinus ( examplesTrainMinus.size(), 0 );
  197. //create classifier object
  198. NICE::GPHIKClassifier * classifier;
  199. classifier = new NICE::GPHIKClassifier ( &conf );
  200. bool performOptimizationAfterIncrement ( false );
  201. // training with examples for positive class only
  202. classifier->train ( examplesTrainPlus, yBinPlus );
  203. // add samples for negative class, thereby going from OCC to binary setting
  204. classifier->addMultipleExamples ( examplesTrainMinus, yBinMinus, performOptimizationAfterIncrement );
  205. // create second object trained in the standard way
  206. NICE::GPHIKClassifier * classifierScratch = new NICE::GPHIKClassifier ( &conf );
  207. classifierScratch->train ( examplesTrain, yBinTrain );
  208. // TEST both classifiers to produce equal results
  209. //------------- read the test data --------------
  210. NICE::Matrix dataTest;
  211. NICE::Vector yBinTest;
  212. NICE::Vector yMultiTest;
  213. std::string s_testData = conf.gS( "main", "testData", "toyExampleTest.data" );
  214. readData ( s_testData, dataTest, yBinTest, yMultiTest );
  215. // ------------------------------------------
  216. // ------------- PREPARATION --------------
  217. // ------------------------------------------
  218. // determine classes known during training/testing and corresponding mapping
  219. // thereby allow for non-continous class labels
  220. std::map<int,int> mapClNoToIdxTrain;
  221. std::map<int,int> mapClNoToIdxTest;
  222. prepareLabelMappings (mapClNoToIdxTrain, classifier, mapClNoToIdxTest, yMultiTest);
  223. NICE::Matrix confusionMatrix ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  224. NICE::Matrix confusionMatrixScratch ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  225. // ------------------------------------------
  226. // ------------- CLASSIFICATION --------------
  227. // ------------------------------------------
  228. evaluateClassifier ( confusionMatrix, classifier, dataTest, yBinTest,
  229. mapClNoToIdxTrain,mapClNoToIdxTest );
  230. evaluateClassifier ( confusionMatrixScratch, classifierScratch, dataTest, yBinTest,
  231. mapClNoToIdxTrain,mapClNoToIdxTest );
  232. // post-process confusion matrices
  233. confusionMatrix.normalizeColumnsL1();
  234. double arr ( confusionMatrix.trace()/confusionMatrix.cols() );
  235. confusionMatrixScratch.normalizeColumnsL1();
  236. double arrScratch ( confusionMatrixScratch.trace()/confusionMatrixScratch.cols() );
  237. if ( verbose )
  238. {
  239. std::cerr << "confusionMatrix: " << confusionMatrix << std::endl;
  240. std::cerr << "confusionMatrixScratch: " << confusionMatrixScratch << std::endl;
  241. }
  242. CPPUNIT_ASSERT_DOUBLES_EQUAL( arr, arrScratch, 1e-8);
  243. // don't waste memory
  244. delete classifier;
  245. delete classifierScratch;
  246. for (std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin(); exTrainIt != examplesTrain.end(); exTrainIt++)
  247. {
  248. delete *exTrainIt;
  249. }
  250. if (verboseStartEnd)
  251. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningOCCtoBinary done ===================== " << std::endl;
  252. }
  253. void TestGPHIKOnlineLearnable::testOnlineLearningBinarytoMultiClass()
  254. {
  255. if (verboseStartEnd)
  256. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningBinarytoMultiClass ===================== " << std::endl;
  257. NICE::Config conf;
  258. conf.sB ( "GPHIKClassifier", "eig_verbose", false);
  259. conf.sS ( "GPHIKClassifier", "optimization_method", "downhillsimplex");
  260. std::string s_trainData = conf.gS( "main", "trainData", "toyExampleSmallScaleTrain.data" );
  261. //------------- read the training data --------------
  262. NICE::Matrix dataTrain;
  263. NICE::Vector yBinTrain;
  264. NICE::Vector yMultiTrain;
  265. readData ( s_trainData, dataTrain, yBinTrain, yMultiTrain );
  266. //----------------- convert data to sparse data structures ---------
  267. std::vector< const NICE::SparseVector *> examplesTrain;
  268. std::vector< const NICE::SparseVector *> examplesTrain12;
  269. std::vector< const NICE::SparseVector *> examplesTrain3;
  270. NICE::Vector yMulti12 ( yMultiTrain.size(), 1 ) ;
  271. NICE::Vector yMulti3 ( yMultiTrain.size(), 1 ) ;
  272. int cnt12 ( 0 );
  273. int cnt3 ( 0 );
  274. examplesTrain.resize( dataTrain.rows() );
  275. std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin();
  276. for (int i = 0; i < (int)dataTrain.rows(); i++, exTrainIt++)
  277. {
  278. *exTrainIt = new NICE::SparseVector( dataTrain.getRow(i) );
  279. if ( ( yMultiTrain[i] == 0 ) || ( yMultiTrain[i] == 1 ) )
  280. {
  281. examplesTrain12.push_back ( *exTrainIt );
  282. yMulti12[ cnt12 ] = yMultiTrain[i];
  283. cnt12++;
  284. }
  285. else
  286. {
  287. examplesTrain3.push_back ( *exTrainIt );
  288. yMulti3[cnt3] = 2;
  289. cnt3++;
  290. }
  291. }
  292. yMulti12.resize ( examplesTrain12.size() );
  293. yMulti3.resize ( examplesTrain3.size() );
  294. //create classifier object
  295. NICE::GPHIKClassifier * classifier;
  296. classifier = new NICE::GPHIKClassifier ( &conf );
  297. bool performOptimizationAfterIncrement ( false );
  298. // training with examples for positive class only
  299. classifier->train ( examplesTrain12, yMulti12 );
  300. // add samples for negative class, thereby going from OCC to binary setting
  301. classifier->addMultipleExamples ( examplesTrain3, yMulti3, performOptimizationAfterIncrement );
  302. // create second object trained in the standard way
  303. NICE::GPHIKClassifier * classifierScratch = new NICE::GPHIKClassifier ( &conf );
  304. classifierScratch->train ( examplesTrain, yMultiTrain );
  305. // TEST both classifiers to produce equal results
  306. //------------- read the test data --------------
  307. NICE::Matrix dataTest;
  308. NICE::Vector yBinTest;
  309. NICE::Vector yMultiTest;
  310. std::string s_testData = conf.gS( "main", "testData", "toyExampleTest.data" );
  311. readData ( s_testData, dataTest, yBinTest, yMultiTest );
  312. // ------------------------------------------
  313. // ------------- PREPARATION --------------
  314. // ------------------------------------------
  315. // determine classes known during training/testing and corresponding mapping
  316. // thereby allow for non-continous class labels
  317. std::map<int,int> mapClNoToIdxTrain;
  318. std::map<int,int> mapClNoToIdxTest;
  319. prepareLabelMappings (mapClNoToIdxTrain, classifier, mapClNoToIdxTest, yMultiTest);
  320. NICE::Matrix confusionMatrix ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  321. NICE::Matrix confusionMatrixScratch ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  322. // ------------------------------------------
  323. // ------------- CLASSIFICATION --------------
  324. // ------------------------------------------
  325. evaluateClassifier ( confusionMatrix, classifier, dataTest, yMultiTest,
  326. mapClNoToIdxTrain,mapClNoToIdxTest );
  327. evaluateClassifier ( confusionMatrixScratch, classifierScratch, dataTest, yMultiTest,
  328. mapClNoToIdxTrain,mapClNoToIdxTest );
  329. // post-process confusion matrices
  330. confusionMatrix.normalizeColumnsL1();
  331. double arr ( confusionMatrix.trace()/confusionMatrix.cols() );
  332. confusionMatrixScratch.normalizeColumnsL1();
  333. double arrScratch ( confusionMatrixScratch.trace()/confusionMatrixScratch.cols() );
  334. if ( verbose )
  335. {
  336. std::cerr << "confusionMatrix: " << confusionMatrix << std::endl;
  337. std::cerr << "confusionMatrixScratch: " << confusionMatrixScratch << std::endl;
  338. }
  339. CPPUNIT_ASSERT_DOUBLES_EQUAL( arr, arrScratch, 1e-8);
  340. // don't waste memory
  341. delete classifier;
  342. delete classifierScratch;
  343. for (std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin(); exTrainIt != examplesTrain.end(); exTrainIt++)
  344. {
  345. delete *exTrainIt;
  346. }
  347. if (verboseStartEnd)
  348. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningBinarytoMultiClass done ===================== " << std::endl;
  349. }
  350. void TestGPHIKOnlineLearnable::testOnlineLearningMultiClass()
  351. {
  352. if (verboseStartEnd)
  353. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningMultiClass ===================== " << std::endl;
  354. NICE::Config conf;
  355. conf.sB ( "GPHIKClassifier", "eig_verbose", false);
  356. conf.sS ( "GPHIKClassifier", "optimization_method", "downhillsimplex");//downhillsimplex greedy
  357. std::string s_trainData = conf.gS( "main", "trainData", "toyExampleSmallScaleTrain.data" );
  358. //------------- read the training data --------------
  359. NICE::Matrix dataTrain;
  360. NICE::Vector yBinTrain;
  361. NICE::Vector yMultiTrain;
  362. readData ( s_trainData, dataTrain, yBinTrain, yMultiTrain );
  363. //----------------- convert data to sparse data structures ---------
  364. std::vector< const NICE::SparseVector *> examplesTrain;
  365. examplesTrain.resize( dataTrain.rows()-1 );
  366. std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin();
  367. for (int i = 0; i < (int)dataTrain.rows()-1; i++, exTrainIt++)
  368. {
  369. *exTrainIt = new NICE::SparseVector( dataTrain.getRow(i) );
  370. }
  371. // TRAIN INITIAL CLASSIFIER FROM SCRATCH
  372. NICE::GPHIKClassifier * classifier;
  373. classifier = new NICE::GPHIKClassifier ( &conf );
  374. //use all but the first example for training and add the first one lateron
  375. NICE::Vector yMultiRelevantTrain ( yMultiTrain.getRangeRef( 0, yMultiTrain.size()-2 ) );
  376. classifier->train ( examplesTrain , yMultiRelevantTrain );
  377. // RUN INCREMENTAL LEARNING
  378. bool performOptimizationAfterIncrement ( true );
  379. NICE::SparseVector * exampleToAdd = new NICE::SparseVector ( dataTrain.getRow( (int)dataTrain.rows()-1 ) );
  380. classifier->addExample ( exampleToAdd, yMultiTrain[ (int)dataTrain.rows()-2 ], performOptimizationAfterIncrement );
  381. if ( verbose )
  382. std::cerr << "label of example to add: " << yMultiTrain[ (int)dataTrain.rows()-1 ] << std::endl;
  383. // TRAIN SECOND CLASSIFIER FROM SCRATCH USING THE SAME OVERALL AMOUNT OF EXAMPLES
  384. examplesTrain.push_back( exampleToAdd );
  385. NICE::GPHIKClassifier * classifierScratch = new NICE::GPHIKClassifier ( &conf );
  386. classifierScratch->train ( examplesTrain, yMultiTrain );
  387. if ( verbose )
  388. std::cerr << "trained both classifiers - now start evaluating them" << std::endl;
  389. // TEST that both classifiers produce equal store-files
  390. if ( writeClassifiersForVerification )
  391. {
  392. std::string s_destination_save_IL ( "myClassifierIL.txt" );
  393. std::filebuf fbOut;
  394. fbOut.open ( s_destination_save_IL.c_str(), ios::out );
  395. std::ostream os (&fbOut);
  396. //
  397. classifier->store( os );
  398. //
  399. fbOut.close();
  400. std::string s_destination_save_scratch ( "myClassifierScratch.txt" );
  401. std::filebuf fbOutScratch;
  402. fbOutScratch.open ( s_destination_save_scratch.c_str(), ios::out );
  403. std::ostream osScratch (&fbOutScratch);
  404. //
  405. classifierScratch->store( osScratch );
  406. //
  407. fbOutScratch.close();
  408. }
  409. // TEST both classifiers to produce equal results
  410. //------------- read the test data --------------
  411. NICE::Matrix dataTest;
  412. NICE::Vector yBinTest;
  413. NICE::Vector yMultiTest;
  414. std::string s_testData = conf.gS( "main", "testData", "toyExampleTest.data" );
  415. readData ( s_testData, dataTest, yBinTest, yMultiTest );
  416. // ------------------------------------------
  417. // ------------- PREPARATION --------------
  418. // ------------------------------------------
  419. // determine classes known during training/testing and corresponding mapping
  420. // thereby allow for non-continous class labels
  421. std::map<int,int> mapClNoToIdxTrain;
  422. std::map<int,int> mapClNoToIdxTest;
  423. prepareLabelMappings (mapClNoToIdxTrain, classifier, mapClNoToIdxTest, yMultiTest);
  424. NICE::Matrix confusionMatrix ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  425. NICE::Matrix confusionMatrixScratch ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  426. // ------------------------------------------
  427. // ------------- CLASSIFICATION --------------
  428. // ------------------------------------------
  429. evaluateClassifier ( confusionMatrix, classifier, dataTest, yMultiTest,
  430. mapClNoToIdxTrain,mapClNoToIdxTest );
  431. evaluateClassifier ( confusionMatrixScratch, classifierScratch, dataTest, yMultiTest,
  432. mapClNoToIdxTrain,mapClNoToIdxTest );
  433. // post-process confusion matrices
  434. confusionMatrix.normalizeColumnsL1();
  435. double arr ( confusionMatrix.trace()/confusionMatrix.cols() );
  436. confusionMatrixScratch.normalizeColumnsL1();
  437. double arrScratch ( confusionMatrixScratch.trace()/confusionMatrixScratch.cols() );
  438. if ( verbose )
  439. {
  440. std::cerr << "confusionMatrix: " << confusionMatrix << std::endl;
  441. std::cerr << "confusionMatrixScratch: " << confusionMatrixScratch << std::endl;
  442. }
  443. CPPUNIT_ASSERT_DOUBLES_EQUAL( arr, arrScratch, 1e-8);
  444. // don't waste memory
  445. delete classifier;
  446. delete classifierScratch;
  447. for (std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin(); exTrainIt != examplesTrain.end(); exTrainIt++)
  448. {
  449. delete *exTrainIt;
  450. }
  451. if (verboseStartEnd)
  452. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningMultiClass done ===================== " << std::endl;
  453. }
  454. #endif