123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836 |
- /**
- * @file GPHIKClassifier.cpp
- * @brief Main interface for our GP HIK classifier (similar to the feature pool classifier interface in vislearning) (Implementation)
- * @author Erik Rodner, Alexander Freytag
- * @date 02/01/2012
- */
- // STL includes
- #include <iostream>
- // NICE-core includes
- #include <core/basics/numerictools.h>
- #include <core/basics/Timer.h>
- // gp-hik-core includes
- #include "GPHIKClassifier.h"
- using namespace std;
- using namespace NICE;
- /////////////////////////////////////////////////////
- /////////////////////////////////////////////////////
- // PROTECTED METHODS
- /////////////////////////////////////////////////////
- /////////////////////////////////////////////////////
- /////////////////////////////////////////////////////
- /////////////////////////////////////////////////////
- // PUBLIC METHODS
- /////////////////////////////////////////////////////
- /////////////////////////////////////////////////////
- GPHIKClassifier::GPHIKClassifier( )
- {
- this->b_isTrained = false;
- this->confSection = "";
-
- this->gphyper = new NICE::FMKGPHyperparameterOptimization();
-
- // in order to be sure about all necessary variables be setup with default values, we
- // run initFromConfig with an empty config
- NICE::Config tmpConfEmpty ;
- this->initFromConfig ( &tmpConfEmpty, this->confSection );
-
- }
- GPHIKClassifier::GPHIKClassifier( const Config *_conf,
- const string & _confSection
- )
- {
- ///////////
- // same code as in empty constructor - duplication can be avoided with C++11 allowing for constructor delegation
- ///////////
-
- this->b_isTrained = false;
- this->confSection = "";
-
- this->gphyper = new NICE::FMKGPHyperparameterOptimization();
-
- ///////////
- // here comes the new code part different from the empty constructor
- ///////////
-
- this->confSection = _confSection;
-
- // if no config file was given, we either restore the classifier from an external file, or run ::init with
- // an emtpy config (using default values thereby) when calling the train-method
- if ( _conf != NULL )
- {
- this->initFromConfig( _conf, _confSection );
- }
- else
- {
- // if no config was given, we create an empty one
- NICE::Config tmpConfEmpty ;
- this->initFromConfig ( &tmpConfEmpty, this->confSection );
- }
- }
- GPHIKClassifier::~GPHIKClassifier()
- {
- if ( this->gphyper != NULL )
- delete this->gphyper;
- }
- void GPHIKClassifier::initFromConfig(const Config *_conf,
- const string & _confSection
- )
- {
- this->d_noise = _conf->gD( _confSection, "noise", 0.01);
- this->confSection = _confSection;
- this->b_verbose = _conf->gB( _confSection, "verbose", false);
- this->b_debug = _conf->gB( _confSection, "debug", false);
- this->uncertaintyPredictionForClassification
- = _conf->gB( _confSection, "uncertaintyPredictionForClassification", false );
-
-
- //how do we approximate the predictive variance for classification uncertainty?
- string s_varianceApproximation = _conf->gS(_confSection, "varianceApproximation", "approximate_fine"); //default: fine approximative uncertainty prediction
- if ( (s_varianceApproximation.compare("approximate_rough") == 0) || ((s_varianceApproximation.compare("1") == 0)) )
- {
- this->varianceApproximation = APPROXIMATE_ROUGH;
-
- //no additional eigenvalue is needed here at all.
- this->gphyper->setNrOfEigenvaluesToConsiderForVarApprox ( 0 );
- }
- else if ( (s_varianceApproximation.compare("approximate_fine") == 0) || ((s_varianceApproximation.compare("2") == 0)) )
- {
- this->varianceApproximation = APPROXIMATE_FINE;
-
- //security check - compute at least one eigenvalue for this approximation strategy
- this->gphyper->setNrOfEigenvaluesToConsiderForVarApprox ( std::max( _conf->gI(_confSection, "nrOfEigenvaluesToConsiderForVarApprox", 1 ), 1) );
- }
- else if ( (s_varianceApproximation.compare("exact") == 0) || ((s_varianceApproximation.compare("3") == 0)) )
- {
- this->varianceApproximation = EXACT;
-
- //no additional eigenvalue is needed here at all.
- this->gphyper->setNrOfEigenvaluesToConsiderForVarApprox ( 0 );
- }
- else
- {
- this->varianceApproximation = NONE;
-
- //no additional eigenvalue is needed here at all.
- this->gphyper->setNrOfEigenvaluesToConsiderForVarApprox ( 0 );
- }
-
- if ( this->b_verbose )
- std::cerr << "varianceApproximationStrategy: " << s_varianceApproximation << std::endl;
-
- //NOTE init all member pointer variables here as well
- this->gphyper->initFromConfig ( _conf, _confSection /*possibly delete the handing of confSection*/);
- }
- ///////////////////// ///////////////////// /////////////////////
- // GET / SET
- ///////////////////// ///////////////////// /////////////////////
- std::set<uint> GPHIKClassifier::getKnownClassNumbers ( ) const
- {
- if ( ! this->b_isTrained )
- fthrow(Exception, "Classifier not trained yet -- aborting!" );
-
- return gphyper->getKnownClassNumbers();
- }
- ///////////////////// ///////////////////// /////////////////////
- // CLASSIFIER STUFF
- ///////////////////// ///////////////////// /////////////////////
- void GPHIKClassifier::classify ( const SparseVector * _example,
- uint & _result,
- SparseVector & _scores
- ) const
- {
- double tmpUncertainty;
- this->classify( _example, _result, _scores, tmpUncertainty );
- }
- void GPHIKClassifier::classify ( const NICE::Vector * _example,
- uint & _result,
- SparseVector & _scores
- ) const
- {
- double tmpUncertainty;
- this->classify( _example, _result, _scores, tmpUncertainty );
- }
- void GPHIKClassifier::classify ( const SparseVector * _example,
- uint & _result,
- SparseVector & _scores,
- double & _uncertainty
- ) const
- {
- if ( ! this->b_isTrained )
- fthrow(Exception, "Classifier not trained yet -- aborting!" );
-
- _scores.clear();
-
- if ( this->b_debug )
- {
- std::cerr << "GPHIKClassifier::classify (sparse)" << std::endl;
- _example->store( std::cerr );
- }
-
- _result = gphyper->classify ( *_example, _scores );
- if ( this->b_debug )
- {
- _scores.store ( std::cerr );
- std::cerr << "_result: " << _result << std::endl;
- }
- if ( _scores.size() == 0 ) {
- fthrow(Exception, "Zero scores, something is likely to be wrong here: svec.size() = " << _example->size() );
- }
-
- if ( this->uncertaintyPredictionForClassification )
- {
- if ( this->b_debug )
- {
- std::cerr << "GPHIKClassifier::classify -- uncertaintyPredictionForClassification is true" << std::endl;
- }
-
- if ( this->varianceApproximation != NONE)
- {
- this->predictUncertainty( _example, _uncertainty );
- }
- else
- {
- // //do nothing
- _uncertainty = std::numeric_limits<double>::max();
- }
- }
- else
- {
- if ( this->b_debug )
- {
- std::cerr << "GPHIKClassifier::classify -- uncertaintyPredictionForClassification is false" << std::endl;
- }
-
- //do nothing
- _uncertainty = std::numeric_limits<double>::max();
- }
- }
- void GPHIKClassifier::classify ( const NICE::Vector * _example,
- uint & _result,
- SparseVector & _scores,
- double & _uncertainty
- ) const
- {
-
- if ( ! this->b_isTrained )
- fthrow(Exception, "Classifier not trained yet -- aborting!" );
-
- _scores.clear();
-
- if ( this->b_debug )
- {
- std::cerr << "GPHIKClassifier::classify (non-sparse)" << std::endl;
- std::cerr << *_example << std::endl;
- }
-
- _result = this->gphyper->classify ( *_example, _scores );
-
- if ( this->b_debug )
- {
- std::cerr << "GPHIKClassifier::classify (non-sparse) -- classification done " << std::endl;
- }
-
- if ( _scores.size() == 0 ) {
- fthrow(Exception, "Zero scores, something is likely to be wrong here: svec.size() = " << _example->size() );
- }
-
- if ( this->uncertaintyPredictionForClassification )
- {
- if ( this->varianceApproximation != NONE)
- {
- this->predictUncertainty( _example, _uncertainty );
- }
- else
- {
- //do nothing
- _uncertainty = std::numeric_limits<double>::max();
- }
- }
- else
- {
- //do nothing
- _uncertainty = std::numeric_limits<double>::max();
- }
- }
- void GPHIKClassifier::classify ( const NICE::SparseVector * _example,
- uint & _result,
- NICE::Vector & _scores,
- double & _uncertainty
- ) const
- {
- if ( ! this->b_isTrained )
- fthrow(Exception, "Classifier not trained yet -- aborting!" );
- _result = gphyper->classify ( *_example, _scores );
- if ( _scores.size() == 0 ) {
- fthrow(Exception, "Zero scores, something is likely to be wrong here: svec.size() = " << _example->size() );
- }
- if ( this->uncertaintyPredictionForClassification )
- {
- if ( this->varianceApproximation != NONE)
- {
- this->predictUncertainty( _example, _uncertainty );
- }
- else
- {
- // //do nothing
- _uncertainty = std::numeric_limits<double>::max();
- }
- }
- else
- {
- //do nothing
- _uncertainty = std::numeric_limits<double>::max();
- }
- }
- void GPHIKClassifier::classify ( const std::vector< const NICE::SparseVector *> _examples,
- NICE::Vector & _results,
- NICE::Matrix & _scores,
- NICE::Vector & _uncertainties
- ) const
- {
- if ( ! this->b_isTrained )
- fthrow(Exception, "Classifier not trained yet -- aborting!" );
- std::set<unsigned int> knownClasses = (this->getKnownClassNumbers());
- _scores.resize( _examples.size(), * (knownClasses.rbegin()) +1 );
- _scores.set( 0.0 );
- _results.resize( _examples.size() );
- _results.set( 0.0 );
- _uncertainties.resize( _examples.size() );
- _uncertainties.set( 0.0 );
- NICE::Vector::iterator resultsIt = _results.begin();
- NICE::Vector::iterator uncIt = _uncertainties.begin();
- uint exCnt ( 0 );
- uint resUI ( 0 );
- NICE::Vector scoresSingle( * (knownClasses.rbegin()) +1, -std::numeric_limits<double>::max() );
- double uncSingle ( 0.0 );
- for ( std::vector< const NICE::SparseVector *>::const_iterator exIt = _examples.begin();
- exIt != _examples.end();
- exIt++, resultsIt++, exCnt++, uncIt++
- )
- {
- this->classify ( *exIt,
- resUI,
- scoresSingle,
- uncSingle
- );
- *resultsIt = resUI;
- *uncIt = uncSingle;
- _scores.setRow( exCnt, scoresSingle );
- scoresSingle.set( -std::numeric_limits<double>::max() );
- }
- }
- /** training process */
- void GPHIKClassifier::train ( const std::vector< const NICE::SparseVector *> & _examples,
- const NICE::Vector & _labels
- )
- {
-
- //FIXME add check whether the classifier has been trained already. if so, discard all previous results.
-
- // security-check: examples and labels have to be of same size
- if ( _examples.size() != _labels.size() )
- {
- fthrow(Exception, "Given examples do not match label vector in size -- aborting!" );
- }
-
- if (b_verbose)
- {
- std::cerr << "GPHIKClassifier::train" << std::endl;
- }
-
- Timer t;
- t.start();
-
- FastMinKernel *fmk = new FastMinKernel ( _examples, d_noise, this->b_debug );
- this->gphyper->setFastMinKernel ( fmk );
-
- t.stop();
- if (b_verbose)
- std::cerr << "Time used for setting up the fmk object: " << t.getLast() << std::endl;
-
- if (b_verbose)
- std::cerr << "Learning ..." << endl;
- // go go go
- this->gphyper->optimize ( _labels );
- if (b_verbose)
- std::cerr << "optimization done" << std::endl;
-
- if ( ( this->varianceApproximation != NONE ) )
- {
- switch ( this->varianceApproximation )
- {
- case APPROXIMATE_ROUGH:
- {
- this->gphyper->prepareVarianceApproximationRough();
- break;
- }
- case APPROXIMATE_FINE:
- {
- this->gphyper->prepareVarianceApproximationFine();
- break;
- }
- case EXACT:
- {
- //nothing to prepare
- break;
- }
- default:
- {
- //nothing to prepare
- }
- }
- }
- //indicate that we finished training successfully
- this->b_isTrained = true;
- // clean up all examples ??
- if (b_verbose)
- std::cerr << "Learning finished" << std::endl;
- }
- /** training process */
- void GPHIKClassifier::train ( const std::vector< const NICE::SparseVector *> & _examples,
- std::map<uint, NICE::Vector> & _binLabels
- )
- {
- // security-check: examples and labels have to be of same size
- for ( std::map< uint, NICE::Vector >::const_iterator binLabIt = _binLabels.begin();
- binLabIt != _binLabels.end();
- binLabIt++
- )
- {
- if ( _examples.size() != binLabIt->second.size() )
- {
- fthrow(Exception, "Given examples do not match label vector in size -- aborting!" );
- }
- }
-
- if ( this->b_verbose )
- std::cerr << "GPHIKClassifier::train" << std::endl;
-
- Timer t;
- t.start();
-
- FastMinKernel *fmk = new FastMinKernel ( _examples, d_noise, this->b_debug );
- this->gphyper->setFastMinKernel ( fmk );
-
- t.stop();
- if ( this->b_verbose )
- std::cerr << "Time used for setting up the fmk object: " << t.getLast() << std::endl;
- if ( this->b_verbose )
- std::cerr << "Learning ..." << std::endl;
-
- // go go go
- this->gphyper->optimize ( _binLabels );
-
- if ( this->b_verbose )
- std::cerr << "optimization done, now prepare for the uncertainty prediction" << std::endl;
-
- if ( ( this->varianceApproximation != NONE ) )
- {
- switch ( this->varianceApproximation )
- {
- case APPROXIMATE_ROUGH:
- {
- gphyper->prepareVarianceApproximationRough();
- break;
- }
- case APPROXIMATE_FINE:
- {
- gphyper->prepareVarianceApproximationFine();
- break;
- }
- case EXACT:
- {
- //nothing to prepare
- break;
- }
- default:
- {
- //nothing to prepare
- }
- }
- }
- //indicate that we finished training successfully
- this->b_isTrained = true;
- // clean up all examples ??
- if ( this->b_verbose )
- std::cerr << "Learning finished" << std::endl;
- }
- GPHIKClassifier *GPHIKClassifier::clone () const
- {
- fthrow(Exception, "GPHIKClassifier: clone() not yet implemented" );
- return NULL;
- }
-
- void GPHIKClassifier::predictUncertainty( const NICE::SparseVector * _example,
- double & _uncertainty
- ) const
- {
- if ( this->gphyper == NULL )
- fthrow(Exception, "Classifier not trained yet -- aborting!" );
-
- //we directly store the predictive variances in the vector, that contains the classification uncertainties lateron to save storage
- switch ( this->varianceApproximation )
- {
- case APPROXIMATE_ROUGH:
- {
- this->gphyper->computePredictiveVarianceApproximateRough( *_example, _uncertainty );
- break;
- }
- case APPROXIMATE_FINE:
- {
- this->gphyper->computePredictiveVarianceApproximateFine( *_example, _uncertainty );
- break;
- }
- case EXACT:
- {
- this->gphyper->computePredictiveVarianceExact( *_example, _uncertainty );
- break;
- }
- default:
- {
- fthrow(Exception, "GPHIKClassifier - your settings disabled the variance approximation needed for uncertainty prediction.");
- }
- }
- }
- void GPHIKClassifier::predictUncertainty( const NICE::Vector * _example,
- double & _uncertainty
- ) const
- {
- if ( this->gphyper == NULL )
- fthrow(Exception, "Classifier not trained yet -- aborting!" );
-
- //we directly store the predictive variances in the vector, that contains the classification uncertainties lateron to save storage
- switch ( this->varianceApproximation )
- {
- case APPROXIMATE_ROUGH:
- {
- this->gphyper->computePredictiveVarianceApproximateRough( *_example, _uncertainty );
- break;
- }
- case APPROXIMATE_FINE:
- {
- this->gphyper->computePredictiveVarianceApproximateFine( *_example, _uncertainty );
- break;
- }
- case EXACT:
- {
- this->gphyper->computePredictiveVarianceExact( *_example, _uncertainty );
- break;
- }
- default:
- {
- fthrow(Exception, "GPHIKClassifier - your settings disabled the variance approximation needed for uncertainty prediction.");
- }
- }
- }
- ///////////////////// INTERFACE PERSISTENT /////////////////////
- // interface specific methods for store and restore
- ///////////////////// INTERFACE PERSISTENT /////////////////////
- void GPHIKClassifier::restore ( std::istream & _is,
- int _format
- )
- {
- //delete everything we knew so far...
- this->clear();
-
- bool b_restoreVerbose ( false );
- #ifdef B_RESTOREVERBOSE
- b_restoreVerbose = true;
- #endif
-
- if ( _is.good() )
- {
- if ( b_restoreVerbose )
- std::cerr << " restore GPHIKClassifier" << std::endl;
-
- std::string tmp;
- _is >> tmp; //class name
-
- if ( ! this->isStartTag( tmp, "GPHIKClassifier" ) )
- {
- std::cerr << " WARNING - attempt to restore GPHIKClassifier, but start flag " << tmp << " does not match! Aborting... " << std::endl;
- throw;
- }
-
- if (gphyper != NULL)
- {
- delete gphyper;
- gphyper = NULL;
- }
-
- _is.precision (numeric_limits<double>::digits10 + 1);
-
- bool b_endOfBlock ( false ) ;
-
- while ( !b_endOfBlock )
- {
- _is >> tmp; // start of block
-
- if ( this->isEndTag( tmp, "GPHIKClassifier" ) )
- {
- b_endOfBlock = true;
- continue;
- }
-
- tmp = this->removeStartTag ( tmp );
-
- if ( b_restoreVerbose )
- std::cerr << " currently restore section " << tmp << " in GPHIKClassifier" << std::endl;
-
- if ( tmp.compare("confSection") == 0 )
- {
- _is >> confSection;
- _is >> tmp; // end of block
- tmp = this->removeEndTag ( tmp );
- }
- else if ( tmp.compare("gphyper") == 0 )
- {
- if ( this->gphyper == NULL )
- this->gphyper = new NICE::FMKGPHyperparameterOptimization();
-
- //then, load everything that we stored explicitely,
- // including precomputed matrices, LUTs, eigenvalues, ... and all that stuff
- this->gphyper->restore( _is, _format );
-
- _is >> tmp; // end of block
- tmp = this->removeEndTag ( tmp );
- }
- else if ( tmp.compare("b_isTrained") == 0 )
- {
- _is >> b_isTrained;
- _is >> tmp; // end of block
- tmp = this->removeEndTag ( tmp );
- }
- else if ( tmp.compare("d_noise") == 0 )
- {
- _is >> d_noise;
- _is >> tmp; // end of block
- tmp = this->removeEndTag ( tmp );
- }
- else if ( tmp.compare("b_verbose") == 0 )
- {
- _is >> b_verbose;
- _is >> tmp; // end of block
- tmp = this->removeEndTag ( tmp );
- }
- else if ( tmp.compare("b_debug") == 0 )
- {
- _is >> b_debug;
- _is >> tmp; // end of block
- tmp = this->removeEndTag ( tmp );
- }
- else if ( tmp.compare("uncertaintyPredictionForClassification") == 0 )
- {
- _is >> uncertaintyPredictionForClassification;
- _is >> tmp; // end of block
- tmp = this->removeEndTag ( tmp );
- }
- else if ( tmp.compare("varianceApproximation") == 0 )
- {
- unsigned int ui_varianceApproximation;
- _is >> ui_varianceApproximation;
- varianceApproximation = static_cast<VarianceApproximation> ( ui_varianceApproximation );
- _is >> tmp; // end of block
- tmp = this->removeEndTag ( tmp );
- }
- else
- {
- std::cerr << "WARNING -- unexpected GPHIKClassifier object -- " << tmp << " -- for restoration... aborting" << std::endl;
- throw;
- }
- }
- }
- else
- {
- std::cerr << "GPHIKClassifier::restore -- InStream not initialized - restoring not possible!" << std::endl;
- throw;
- }
- }
- void GPHIKClassifier::store ( std::ostream & _os,
- int _format
- ) const
- {
- if ( _os.good() )
- {
- // show starting point
- _os << this->createStartTag( "GPHIKClassifier" ) << std::endl;
-
- _os.precision (numeric_limits<double>::digits10 + 1);
-
- _os << this->createStartTag( "confSection" ) << std::endl;
- _os << confSection << std::endl;
- _os << this->createEndTag( "confSection" ) << std::endl;
-
- _os << this->createStartTag( "gphyper" ) << std::endl;
- //store the underlying data
- //will be done in gphyper->store(of,format)
- //store the optimized parameter values and all that stuff
- this->gphyper->store( _os, _format );
- _os << this->createEndTag( "gphyper" ) << std::endl;
-
-
- /////////////////////////////////////////////////////////
- // store variables which we previously set via config
- /////////////////////////////////////////////////////////
- _os << this->createStartTag( "b_isTrained" ) << std::endl;
- _os << b_isTrained << std::endl;
- _os << this->createEndTag( "b_isTrained" ) << std::endl;
-
- _os << this->createStartTag( "d_noise" ) << std::endl;
- _os << d_noise << std::endl;
- _os << this->createEndTag( "d_noise" ) << std::endl;
-
-
- _os << this->createStartTag( "b_verbose" ) << std::endl;
- _os << b_verbose << std::endl;
- _os << this->createEndTag( "b_verbose" ) << std::endl;
-
- _os << this->createStartTag( "b_debug" ) << std::endl;
- _os << b_debug << std::endl;
- _os << this->createEndTag( "b_debug" ) << std::endl;
-
- _os << this->createStartTag( "uncertaintyPredictionForClassification" ) << std::endl;
- _os << uncertaintyPredictionForClassification << std::endl;
- _os << this->createEndTag( "uncertaintyPredictionForClassification" ) << std::endl;
-
- _os << this->createStartTag( "varianceApproximation" ) << std::endl;
- _os << varianceApproximation << std::endl;
- _os << this->createEndTag( "varianceApproximation" ) << std::endl;
-
-
-
- // done
- _os << this->createEndTag( "GPHIKClassifier" ) << std::endl;
- }
- else
- {
- std::cerr << "OutStream not initialized - storing not possible!" << std::endl;
- }
- }
- void GPHIKClassifier::clear ()
- {
- if ( this->gphyper != NULL )
- {
- delete this->gphyper;
- this->gphyper = NULL;
- }
- }
- ///////////////////// INTERFACE ONLINE LEARNABLE /////////////////////
- // interface specific methods for incremental extensions
- ///////////////////// INTERFACE ONLINE LEARNABLE /////////////////////
- void GPHIKClassifier::addExample( const NICE::SparseVector * _example,
- const double & _label,
- const bool & _performOptimizationAfterIncrement
- )
- {
-
- if ( ! this->b_isTrained )
- {
- //call train method instead
- std::cerr << "Classifier not initially trained yet -- run initial training instead of incremental extension!" << std::endl;
-
- std::vector< const NICE::SparseVector *> examplesVec;
- examplesVec.push_back ( _example );
-
- NICE::Vector labelsVec ( 1 , _label );
-
- this->train ( examplesVec, labelsVec );
- }
- else
- {
- this->gphyper->addExample( _example, _label, _performOptimizationAfterIncrement );
- }
- }
- void GPHIKClassifier::addMultipleExamples( const std::vector< const NICE::SparseVector * > & _newExamples,
- const NICE::Vector & _newLabels,
- const bool & _performOptimizationAfterIncrement
- )
- {
- //are new examples available? If not, nothing has to be done
- if ( _newExamples.size() < 1)
- return;
- if ( ! this->b_isTrained )
- {
- //call train method instead
- std::cerr << "Classifier not initially trained yet -- run initial training instead of incremental extension!" << std::endl;
-
- this->train ( _newExamples, _newLabels );
- }
- else
- {
- this->gphyper->addMultipleExamples( _newExamples, _newLabels, _performOptimizationAfterIncrement );
- }
- }
|