123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221 |
- /**
- * @file GPHIKRawClassifier.h
- * @brief ..
- * @author Erik Rodner
- * @date 16-09-2015 (dd-mm-yyyy)
- */
- #ifndef _NICE_GPHIKRAWCLASSIFIERINCLUDE
- #define _NICE_GPHIKRAWCLASSIFIERINCLUDE
- // STL includes
- #include <string>
- #include <limits>
- #include <set>
- // NICE-core includes
- #include <core/basics/Config.h>
- #include <core/basics/Persistent.h>
- #include <core/vector/SparseVectorT.h>
- #include <core/algebra/ILSConjugateGradients.h>
- //
- #include "quantization/Quantization.h"
- #include "GMHIKernelRaw.h"
- namespace NICE {
- /**
- * @class GPHIKRawClassifier
- * @brief ...
- * @author Erik Rodner, Alexander Freytag
- */
- class GPHIKRawClassifier
- {
- protected:
- /////////////////////////
- /////////////////////////
- // PROTECTED VARIABLES //
- /////////////////////////
- /////////////////////////
- ///////////////////////////////////
- // output/debug related settings //
- ///////////////////////////////////
- /** verbose flag for useful output*/
- bool b_verbose;
- /** debug flag for several outputs useful for debugging*/
- bool b_debug;
- //////////////////////////////////////
- // general specifications //
- //////////////////////////////////////
- /** Header in configfile where variable settings are stored */
- std::string confSection;
- //////////////////////////////////////
- // EigenValue Decomposition //
- //////////////////////////////////////
- bool b_eig_verbose;
- int i_eig_value_max_iterations;
- //////////////////////////////////////
- // classification related variables //
- //////////////////////////////////////
- /** memorize whether the classifier was already trained*/
- bool b_isTrained;
- /** Gaussian label noise for model regularization */
- double d_noise;
- ILSConjugateGradients *solver;
- /** object performing feature quantization */
- NICE::Quantization *q;
- typedef double ** PrecomputedType;
- /** precomputed arrays A (1 per class) needed for classification without quantization */
- std::map< uint, PrecomputedType > precomputedA;
- /** precomputed arrays B (1 per class) needed for classification without quantization */
- std::map< uint, PrecomputedType > precomputedB;
- /** precomputed LUTs (1 per class) needed for classification with quantization */
- std::map< uint, double * > precomputedT;
- uint *nnz_per_dimension;
- uint num_examples;
- uint num_dimension;
- double f_tolerance;
- GMHIKernelRaw *gm;
- std::set<uint> knownClasses;
- /////////////////////////
- /////////////////////////
- // PROTECTED METHODS //
- /////////////////////////
- /////////////////////////
- void clearSetsOfTablesAandB();
- void clearSetsOfTablesT();
- /////////////////////////
- /////////////////////////
- // PUBLIC METHODS //
- /////////////////////////
- /////////////////////////
- public:
- /**
- * @brief default constructor
- */
- GPHIKRawClassifier( );
- /**
- * @brief standard constructor
- */
- GPHIKRawClassifier( const NICE::Config *_conf ,
- const std::string & s_confSection = "GPHIKRawClassifier"
- );
- /**
- * @brief simple destructor
- */
- ~GPHIKRawClassifier();
- /**
- * @brief Setup internal variables and objects used
- * @param conf Config file to specify variable settings
- * @param s_confSection
- */
- void initFromConfig(const NICE::Config *_conf,
- const std::string & s_confSection
- );
- ///////////////////// ///////////////////// /////////////////////
- // GET / SET
- ///////////////////// ///////////////////// /////////////////////
- /**
- * @brief Return currently known class numbers
- */
- std::set<uint> getKnownClassNumbers ( ) const;
- ///////////////////// ///////////////////// /////////////////////
- // CLASSIFIER STUFF
- ///////////////////// ///////////////////// /////////////////////
- /**
- * @brief classify a given example with the previously learned model
- * @author Alexander Freytag, Erik Rodner
- * @param example (SparseVector) to be classified given in a sparse representation
- * @param result (int) class number of most likely class
- * @param scores (SparseVector) classification scores for known classes
- */
- void classify ( const NICE::SparseVector * _example,
- uint & _result,
- NICE::SparseVector & _scores
- ) const;
- /**
- * @brief classify a given example with the previously learned model
- * @author Alexander Freytag, Erik Rodner
- * @param example (SparseVector) to be classified given in a sparse representation
- * @param result (int) class number of most likely class
- * @param scores (Vector) classification scores for known classes
- */
- void classify ( const NICE::SparseVector * _example,
- uint & _result,
- NICE::Vector & _scores
- ) const;
- /**
- * @brief classify a given set of examples with the previously learned model
- * @author Alexander Freytag, Erik Rodner
- * @param examples ((std::vector< NICE::SparseVector *>)) to be classified given in a sparse representation
- * @param results (Vector) class number of most likely class per example
- * @param scores (NICE::Matrix) classification scores for known classes and test examples
- */
- void classify ( const std::vector< const NICE::SparseVector *> _examples,
- NICE::Vector & _results,
- NICE::Matrix & _scores
- ) const;
- /**
- * @brief train this classifier using a given set of examples and a given set of binary label vectors
- * @date 18-10-2012 (dd-mm-yyyy)
- * @author Alexander Freytag, Erik Rodner
- * @param examples (std::vector< NICE::SparseVector *>) training data given in a sparse representation
- * @param labels (Vector) class labels (multi-class)
- */
- void train ( const std::vector< const NICE::SparseVector *> & _examples,
- const NICE::Vector & _labels
- );
- /**
- * @brief train this classifier using a given set of examples and a given set of binary label vectors
- * @author Alexander Freytag, Erik Rodner
- * @param examples examples to use given in a sparse data structure
- * @param binLabels corresponding binary labels with class no. There is no need here that every examples has only on positive entry in this set (1,-1)
- */
- void train ( const std::vector< const NICE::SparseVector *> & _examples,
- std::map<uint, NICE::Vector> & _binLabels
- );
- };
- }
- #endif
|