123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272 |
- /**
- * @file TestGPHIKPersistent.cpp
- * @brief CppUnit-Testcase to verify that GPHIKClassifier methods herited from Persistent (store and restore) work as desired.
- * @author Alexander Freytag
- * @date 21-12-2013
- */
- #ifdef NICE_USELIB_CPPUNIT
- // STL includes
- #include <iostream>
- #include <vector>
- // NICE-core includes
- #include <core/basics/Config.h>
- #include <core/basics/Timer.h>
- // gp-hik-core includes
- #include "gp-hik-core/GPHIKClassifier.h"
- #include "TestGPHIKPersistent.h"
- using namespace std; //C basics
- using namespace NICE; // nice-core
- const bool verboseStartEnd = true;
- const bool verbose = false;
- CPPUNIT_TEST_SUITE_REGISTRATION( TestGPHIKPersistent );
- void TestGPHIKPersistent::setUp() {
- }
- void TestGPHIKPersistent::tearDown() {
- }
- void TestGPHIKPersistent::testPersistentMethods()
- {
-
- if (verboseStartEnd)
- std::cerr << "================== TestGPHIKPersistent::testPersistentMethods ===================== " << std::endl;
-
- NICE::Config conf;
- std::string trainData = conf.gS( "main", "trainData", "toyExampleSmallScaleTrain.data" );
- NICE::GPHIKClassifier * classifier;
-
- //------------- read the training data --------------
-
- NICE::Matrix dataTrain;
- NICE::Vector yBinTrain;
- NICE::Vector yMultiTrain;
- std::ifstream ifsTrain ( trainData.c_str() , ios::in );
- if ( ifsTrain.good() )
- {
- ifsTrain >> dataTrain;
- ifsTrain >> yBinTrain;
- ifsTrain >> yMultiTrain;
- ifsTrain.close();
- }
- else
- {
- std::cerr << "Unable to read training data from file " << trainData << " -- aborting." << std::endl;
- CPPUNIT_ASSERT ( ifsTrain.good() );
- }
-
- //----------------- convert data to sparse data structures ---------
- std::vector< const NICE::SparseVector *> examplesTrain;
- examplesTrain.resize( dataTrain.rows() );
-
- std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin();
- for (int i = 0; i < (int)dataTrain.rows(); i++, exTrainIt++)
- {
- *exTrainIt = new NICE::SparseVector( dataTrain.getRow(i) );
- }
-
- // TRAIN CLASSIFIER FROM SCRATCH
- std::string confsection ( "GPHIKClassifier" );
- conf.sB ( confsection, "use_quantization", true );
- conf.sS ( confsection, "s_quantType", "1d-aequi-0-1" );
- conf.sS ( confsection, "transform", "identity");
-
- classifier = new GPHIKClassifier ( &conf );
-
- if ( verbose )
- {
- std::cerr << yBinTrain << std::endl;
-
- std::cerr << "train classifier with artifially disturbed labels" << std::endl;
-
- }
-
- classifier->train ( examplesTrain , yBinTrain);//yMultiTrain );
-
-
- // TEST STORING ABILITIES
-
- std::string s_destination_save ( "myClassifier.txt" );
-
- std::filebuf fbOut;
- fbOut.open ( s_destination_save.c_str(), ios::out );
- std::ostream os (&fbOut);
- //
- classifier->store( os );
- //
- fbOut.close();
-
- if ( verbose )
- {
- std::cerr << "store done successfully" << std::endl;
- }
-
-
- // TEST RESTORING ABILITIES
-
- NICE::GPHIKClassifier * classifierRestored = new GPHIKClassifier();
-
- std::string s_destination_load ( "myClassifier.txt" );
-
- std::filebuf fbIn;
- fbIn.open ( s_destination_load.c_str(), ios::in );
- std::istream is (&fbIn);
- //
- classifierRestored->restore( is );
- //
- fbIn.close();
-
- if ( verbose )
- {
- std::cerr << "restore done successfully" << std::endl;
- }
-
-
- // TEST both classifiers to produce equal results
-
- //------------- read the test data --------------
-
-
- NICE::Matrix dataTest;
- NICE::Vector yBinTest;
- NICE::Vector yMultiTest;
- std::string testData = conf.gS( "main", "testData", "toyExampleTest.data" );
- std::ifstream ifsTest ( testData.c_str(), ios::in );
- if ( ifsTest.good() )
- {
- ifsTest >> dataTest;
- ifsTest >> yBinTest;
- ifsTest >> yMultiTest;
- ifsTest.close();
- }
- else
- {
- std::cerr << "Unable to read test data, aborting." << std::endl;
- CPPUNIT_ASSERT ( ifsTest.good() );
- }
-
- // ------------------------------------------
- // ------------- PREPARATION --------------
- // ------------------------------------------
-
- // determine classes known during training and corresponding mapping
- // thereby allow for non-continous class labels
- std::set< uint > classesKnownTraining = classifier->getKnownClassNumbers();
-
- uint noClassesKnownTraining ( classesKnownTraining.size() );
- std::map< uint, uint > mapClNoToIdxTrain;
- std::set< uint >::const_iterator clTrIt = classesKnownTraining.begin();
- for ( uint i=0; i < noClassesKnownTraining; i++, clTrIt++ )
- mapClNoToIdxTrain.insert ( std::pair< uint, uint > ( *clTrIt, i ) );
-
- // determine classes known during testing and corresponding mapping
- // thereby allow for non-continous class labels
- std::set< uint > classesKnownTest;
- classesKnownTest.clear();
-
- // determine which classes we have in our label vector
- // -> MATLAB: myClasses = unique(y);
- for ( NICE::Vector::const_iterator it = yMultiTest.begin(); it != yMultiTest.end(); it++ )
- {
- if ( classesKnownTest.find ( *it ) == classesKnownTest.end() )
- {
- classesKnownTest.insert ( *it );
- }
- }
-
- uint noClassesKnownTest ( classesKnownTest.size() );
- std::map< uint, uint > mapClNoToIdxTest;
- std::set< uint >::const_iterator clTestIt = classesKnownTest.begin();
- for ( uint i=0; i < noClassesKnownTest; i++, clTestIt++ )
- mapClNoToIdxTest.insert ( std::pair< uint, uint > ( *clTestIt, i ) );
-
-
- if ( verbose )
- {
- std::cout << "Train data mapping: " << std::endl;
- for ( std::map< uint, uint >::const_iterator clTrainIt = mapClNoToIdxTrain.begin(); clTrainIt != mapClNoToIdxTrain.end(); clTrainIt++ )
- {
- std::cout << " " << clTrainIt->first << " " << clTrainIt->second << std::endl;
- }
- std::cout << "Test data mapping: " << std::endl;
- for ( std::map< uint, uint >::const_iterator clTestIt = mapClNoToIdxTest.begin(); clTestIt != mapClNoToIdxTest.end(); clTestIt++ )
- {
- std::cout << " " << clTestIt->first << " " << clTestIt->second << std::endl;
- }
- }
-
- NICE::Matrix confusionMatrix ( noClassesKnownTraining, noClassesKnownTest, 0.0);
- NICE::Matrix confusionMatrixRestored ( noClassesKnownTraining, noClassesKnownTest, 0.0);
-
- int i_loopEnd ( (int)dataTest.rows() );
-
-
- for (int i = 0; i < i_loopEnd ; i++)
- {
- NICE::Vector example ( dataTest.getRow(i) );
- NICE::SparseVector scores;
- uint result;
-
- // classify with trained classifier
- classifier->classify( &example, result, scores );
-
-
- confusionMatrix( mapClNoToIdxTrain.find(result)->second, mapClNoToIdxTest.find(yMultiTest[i])->second ) += 1.0;
- // classify with restored classifier
- scores.clear();
- classifierRestored->classify( &example, result, scores );
-
- confusionMatrixRestored( mapClNoToIdxTrain.find(result)->second, mapClNoToIdxTest.find(yMultiTest[i])->second ) += 1.0;
-
-
- }
-
- confusionMatrix.normalizeColumnsL1();
- double arr ( confusionMatrix.trace()/confusionMatrix.cols() );
- confusionMatrixRestored.normalizeColumnsL1();
- double arrRestored ( confusionMatrixRestored.trace()/confusionMatrixRestored.cols() );
-
- if ( verbose )
- {
- std::cout << "confusionMatrix: " << confusionMatrix << std::endl;
- std::cout << "confusionMatrixRestored: " << confusionMatrixRestored << std::endl;
- std::cout << "arr: " << arr << std::endl;
- std::cout << "arrRestored: " << arrRestored << std::endl;
-
- }
-
- CPPUNIT_ASSERT_DOUBLES_EQUAL( arr, arrRestored, 1e-8);
-
- // don't waste memory
- //TODO clean up of training data, also in TestGPHIKPersistent
-
- delete classifier;
- delete classifierRestored;
-
- for (std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin(); exTrainIt != examplesTrain.end(); exTrainIt++)
- {
- delete *exTrainIt;
- }
-
- if (verboseStartEnd)
- std::cerr << "================== TestGPHIKPersistent::testPersistentMethods done ===================== " << std::endl;
-
- }
- #endif
|