123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409 |
- \usepackage{xspace}
- \renewcommand{\vec}[1]{\mathbf{\boldsymbol{#1}}}
- \newcommand{\mat}[1]{\mathbf{#1}}
- %\newcommand{\diag}{\mathrm{diag}}
- %\newcommand{\trace}{\mathrm{trace}}
- \newcommand\equationname{Eq.}
- \newcommand\eg{\textit{e.g.},\xspace}
- \newcommand\ie{\textit{i.e.},\xspace}
- \newcommand\cf{\textit{cf.}\xspace}
- \newcommand{\pderiv}[2]{\frac{\partial #1}{\partial #2}}
- \newcommand{\pderivk}[3]{\frac{\partial^{#3} #1}{\partial #2^{#3}}}
- \newcommand{\deriv}[2]{\frac{\operatorname{d} #1}{\operatorname{d} #2}}
- \newcommand{\derivk}[3]{\frac{\operatorname{d}^{#3} #1}{\operatorname{d} #2^{#3}}}
- \newcommand{\integral}[4]{\int_{#3}^{#4} #1 \operatorname{d}#2}
- %\newcommand{\argmax}{\operatorname{argmax}}
- %\newcommand{\argmin}{\operatorname{argmin}}
- %\newcommand{\sign}{\operatorname{sign}}
- \newcommand{\smalleq}{{\scriptstyle =}}
- \newcommand{\quotes}[1]{``#1''}
- \newcommand\landau{\mathcal{O}}
- \newcommand\CONDON{\,|\,}
- \newcommand{\vectornorm}[1]{\left|\left|#1\right|\right|}
- \newcommand\kernelFunctionHIK{\kernelFunction^{\text{\scriptsize HIK}}}
- \newcommand\kernelFunctionGHIK{\kernelFunction^{\text{\scriptsize GHIK}}}
- \newcommand\mattwo[4]{\left[\begin{array}{cc} #1 & #2\\ #3 & #4 \end{array} \right]}
- \newcommand\matthree[9]{\left[\begin{array}{ccc} #1 & #2 & #3\\ #4 & #5 & #6\\ #7 & #8 & #9 \end{array} \right]}
- \newcommand\vectwo[2]{\left[\begin{array}{c} #1 \\ #2 \end{array} \right]}
- \newcommand\vecthree[3]{\left[\begin{array}{c} #1 \\ #2 \\ #3 \end{array} \right]}
- % notations
- \DeclareMathOperator{\x}{\boldsymbol{x}}
- \DeclareMathOperator{\y}{\boldsymbol{y}}
- \newcommand\labelspace{\mathcal{Y}}
- \newcommand\inputspace{\mathcal{X}}
- \newcommand\inputsingle{\vec{x}}
- \newcommand\inputsinglecomp{x}
- \newcommand\labelsingle{y}
- \newcommand\labelspecific{k}
- \newcommand\labelrandom{\labelsingle}
- \newcommand\inputrandom{\inputsingle}
- \newcommand\dataset{\mathcal{D}}
- \newcommand\dimension{D}
- \newcommand\noe{n}
- \newcommand\numberOfExamples{\noe}
- \newcommand\inputnew{\inputsingle^*}
- \newcommand\labelnew{\labelsingle_*}
- \newcommand\inputmatrix{\mat{X}}
- \newcommand\expectation{\mathbb{E}}
- \newcommand\cfunction{\tilde{h}}
- \newcommand\cestimate{\hat{h}}
- \newcommand\impuls[1]{\delta\left[#1\right]}
- \usepackage{upgreek}
- \newcommand\impulsDiscrete[1]{\updelta \left( {#1} \right)}
- \newcommand\numberOfClasses{M}
- \newcommand\error{\mbox{\textit{err}}}
- % model selection
- \newcommand\cparameters{\vec{\theta}}
- \newcommand\parameterspace{\Theta}
- \newcommand\labelvector{\vec{y}}
- \newcommand\inputdataset{\mat{X}}
- % kernel stuff
- \newcommand\meanFunction{\mu}
- \newcommand\kernelFunction{K}
- \newcommand\kernelMatrix{\mat{K}}
- \newcommand\kernelMatrixValue{K}
- \newcommand\kernelVector{\vec{k}_{*}}
- %\newcommand\kernelVector{\kernelFunction(\inputdataset, \inputnew)}
- \newcommand\kernelSelf{\kernelFunction(\inputnew, \inputnew)}
- % latent functions
- \newcommand\latentFunction{f}
- \newcommand\latentvector{\vec{f}}
- \newcommand\latentfunctionvalue{f}
- \newcommand\latentnew{f_*}
- \newcommand\ftransform{\phi}
- \newcommand\distance{d}
- \newcommand\rbfparameter{\gamma}
- \newcommand\featureSpace{\mathcal{H}}
- \newcommand\gpsymbol{\mathcal{GP}}
- \newcommand\meanfunction{\mathcal{M}}
- % model and modelspace / hypothesis, hypothesispace
- \newcommand\hypothesis{h}
- \newcommand\hypothesisSpace{\mathbb{H}}
- \newcommand\mapestimate[1]{ {\hat{#1}}^{\text{MAP}} }
- \newcommand\mlestimate[1]{ {\hat{#1}}^{\text{ML}} }
- \newcommand\bayesestimate[1]{ {\hat{#1}}^{\text{Bayes}} }
- \newcommand\mmseestimate[1]{ {\hat{#1}}^{\text{MMSE}} }
- \newcommand\mss[1]{\mbox{\scriptsize #1}}
- \newcommand\baggingFraction{r_{\mss{B}}}
- \newcommand\assumeeq{\stackrel{*}{=}}
- \newcommand\assumepropto{\stackrel{*}{\propto}}
- \newcommand\ensembleSize{T}
- \newcommand\ensembleIndex{t}
- \newcommand\dtthreshold{\zeta}
- \newcommand\thresholdSet{Q}
- \newcommand\featureindex{r}
- \newcommand\rFeatureSet{\mathcal{R}}
- \newcommand\leafNode{\vartheta}
- \newcommand\numberOfLeaves{m_\ell}
- \newcommand\node{v}
- \newcommand\splitCriterion{\Gamma}
- \newcommand\impurityMeasure{\mathcal{J}}
- \newcommand\entropy{\mathcal{E}}
- \newcommand\impurityThreshold{\xi_\impurityMeasure}
- \newcommand\minexamplesThreshold{\xi_{\mss{n}}}
- \newcommand\maxdepthThreshold{\xi_{\mss{d}}}
- \newcommand\hyperplane{\vec{w}}
- %\newcommand\stepFunction[1]{\delta^s\left[ #1 \right]}
- \newcommand\stepFunction[1]{\mbox{sign}\left(#1\right)}
- \newcommand\numberOfKernels{R}
- \newcommand\bias{b}
- \newcommand\margin{\mbox{mg}}
- \DeclareMathOperator\maximize{\mbox{maximize}}
- \DeclareMathOperator\minimize{\mbox{minimize}}
- \newcommand\hingeLoss{H}
- \newcommand\lagrangeDual{g}
- \newcommand\hyperparameters{\vec{\eta}}
- \newcommand\hyperparameter{\eta}
- \newcommand\kernelweight{\beta}
- \newcommand\kernelweights{\vec{\beta}}
- \newcommand\variance{\sigma^2}
- \newcommand\stddev{\sigma}
- \newcommand\eigmax{\lambda_{\text{max}}}
- \newcommand\eigmin{\lambda_{\text{min}}}
- % GP related stuff
- \newcommand\gpregmean{\mu_*}
- \newcommand\gpregvariance{\sigma^2_*}
- \newcommand\gpregstddev{\sigma_*}
- % differential symbol for integrals
- \newcommand\diffd{d}
- \newcommand\kernelscaling{v_0}
- \newcommand\kernelbias{v_1}
- \newcommand\qexpgrad{g}
- %\newcommand\gpnoise{\sigma_{\varepsilon}^2}
- \newcommand\gpnoise{\sigma^2}
- \newcommand\gpnoisestddev{\sigma_{\varepsilon}}
- %\newcommand\identityMatrix[1]{\mat{I}_{(#1)}}
- \newcommand\identityMatrix[1]{\mat{I}}
- \newcommand\kernelStuff{\zeta_\kernelFunction}
- % gp classification
- \newcommand\cumgauss{\Phi}
- \newcommand\cumgaussLoss{L_{\cumgauss}}
- \DeclareMathOperator\sigmoid{\mbox{sig}}
- \newcommand\sigmoidLoss{L_{\scriptsize \text{sig}}}
- \DeclareMathOperator\erf{\mbox{erf}}
- % gp classification scaling factor
- \newcommand\gpnoiseC{\sigma_{c}^2}
- \newcommand\gpnoisestddevC{\sigma_{c}}
- % laplace methods
- \newcommand\laplaceMode{\vec{\hat{f}}}
- \newcommand\laplaceModeValue{\hat{f}}
- \newcommand\laplaceLog{L}
- \newcommand\approxP{q}
- \newcommand\constTerm{\text{\textit{const.}}}
- \newcommand\nhessianLikelihood{\mat{W}}
- \newcommand\nhessianLikelihoodValue{W}
- % gp multi
- \newcommand\ymulti{y_*^{\scriptsize \mbox{multi}}}
- \newcommand\ymultip{y_*^{\scriptsize \mbox{multi}}}
- % gp hyperparameter estimation
- \newcommand\kernelMatrixHyper{\mat{\tilde{K}}_\hyperparameters}
- % optimization problems
- \newcommand\optimizationProblem[5]{
- \begin{equation}
- \label{#1}
- \begin{aligned}
- & \underset{#3}{#2}
- & & #4 \\
- & \text{subject to}
- & & #5 \enspace.
- \end{aligned}
- \end{equation}
- }
- \newcommand\optimizationProblemUnconstrained[4]{
- \begin{equation}
- \label{#1}
- \begin{aligned}
- & \underset{#3}{#2}
- & & #4 \enspace.\\
- \end{aligned}
- \end{equation}
- }
- % transfer learning framework
- %\newcommand\targetTask{\mathcal{T}}
- \newcommand\targetTask{\tau}
- \newcommand\supportTag{\mathcal{S}}
- \newcommand\datasetSupport[1]{{\dataset}^{\supportTag}_{#1}}
- \newcommand\datasetSupportSingle{{\dataset}^{\supportTask}}
- \newcommand\datasetTarget{{\dataset}^{\targetTask}}
- \newcommand\supportCollection{\mathfrak{D}^{\supportTag}}
- \newcommand\numberOfTasks{J}
- \newcommand\numberOfTasksMT{P}
- \newcommand\noeTarget{\tilde{\noe}}
- \newcommand\noeTotal{\noe}
- \newcommand\noePositive{\noe_1}
- \newcommand\noeSupport{\noe^{\supportTag}}
- \newcommand\supportClasses{\supportTag}
- \newcommand\supportClass{s}
- \newcommand\backgroundClass{\mathcal{B}}
- \newcommand\transferParameter{\vec{\theta}}
- \newcommand\tpSpace{\Theta}
- % regularized trees
- \newcommand\targetClass{\targetTask}
- \newcommand\rtPara{\vec{\theta}}
- \newcommand\rtParaValue{\theta}
- \newcommand\rtHyperMu{\vec{\mu}}
- \newcommand\rtHyperMuValue{\mu}
- %\newcommand\rtHyperSigma{\sigma_{\supportTag}}
- \newcommand\rtHyperVariance{\sigma^2}
- \newcommand\leafIndex{i}
- \newcommand\datasetLeaf[1]{\omega_{#1}}
- %\newcommand\datasetLeaf[1]{\dataset^{\ell}_{#1}}
- %\newcommand\rtLeafProbs[1]{\vec{t}_{\supportTag}^{#1}}
- \newcommand\rtLeafProbs[1]{\vec{t}^{(#1)}}
- \newcommand\rtLeafProb[2]{t^{(#1)}_{#2}}
- \newcommand\lagrange{L}
- %\newcommand\mcdata[1]{\dataset^{#1}}
- \newcommand\mcdata[1]{\dataset^{#1}}
- %\newcommand\rtML[2]{\hat{\theta}^{\mss{(ML)},#2}_{#1}}
- \newcommand\rtML[2]{t^{(#1)}_{#2}}
- \newcommand\rtMLv[1]{\vec{t}^{(#1)}}
- \newcommand\rtParaSpace{\Theta}
- % only for the target task
- \newcommand\rtMAPv{\vec{\hat{\theta}}^{\mss{MAP}}}
- \newcommand\leafCounts{\vec{c}}
- \newcommand\leafCount{c}
- \newcommand\leafNodeBinaryV{\ftransform}
- \newcommand\rtPostProbsV[1]{w^{\left(#1\right)}}
- \newcommand\leafNodeBinary{\ftransform}
- \newcommand\rtPostProbs[1]{\vec{w}^{\left(#1\right)}}
- % feature relevance
- \newcommand\featureSet{\mathcal{F}}
- \newcommand\featureFunction{g}
- \newcommand\frPara{\vec{\theta}}
- \newcommand\frParaValue{\theta}
- \newcommand\frBaseModel{h}
- \newcommand\frBaseModelSpace{H}
- \newcommand\frHyper{\vec{\beta}}
- \newcommand\frHyperValue{\beta}
- %\newcommand\
- % depgp
- \newcommand\depgpcorr{\rho}
- \newcommand\tT{\textcolor{green}{\targetTask}}
- \newcommand\tS{\textcolor{blue}{\supportTask}}
- %\newcommand\supportTask{\supportTag}
- \newcommand\supportTask{s}
- \newcommand\depgpKNoColor{
- \left(\begin{array}{cc} \kernelMatrix_{\targetTask \targetTask} & \depgpcorr \kernelMatrix_{\targetTask \supportTask}\\ \depgpcorr \kernelMatrix_{\targetTask \supportTask}^T & \kernelMatrix_{\supportTask \supportTask}\end{array}\right)
- }
- \newcommand\depgpK{
- \LARGE\left(\begin{array}{cc} \kernelMatrix_{\tT \tT} & \depgpcorr \kernelMatrix_{\tT \tS}\\ \depgpcorr \kernelMatrix_{\tT \tS}^T & \kernelMatrix_{\tS \tS}\end{array}\right)
- }
- \newcommand\depgpKNoColorInd{
- \left(\begin{array}{cc} \kernelMatrix_{\targetTask \targetTask} & \mat{0}\\ \mat{0} & \kernelMatrix_{\supportTask \supportTask}\end{array}\right)
- }
- \newcommand\kernelFunctionX{\kernelFunction^{\inputspace}}
- \newcommand\kernelMatrixX{\kernelMatrix^{\inputspace}}
- \newcommand\kron{\otimes}
- \newcommand\taskIndex{j}
- \newcommand\kernelVectorTarget{\vec{k}_{\targetTask*}}
- \newcommand\kernelVectorSupport{\vec{k}_{\supportTask*}}
- \newcommand\labelvectorTarget{\labelvector_{\targetTask}}
- \newcommand\labelvectorSupport{\labelvector_{\supportTask}}
- \newcommand\inputdatasetTarget{\inputdataset_{\targetTask}}
- \newcommand\inputdatasetSupport{\inputdataset_{\supportTask}}
- \newcommand\loovariance{\tilde{\sigma}^2}
- \newcommand\loomean{\tilde{\mu}}
- \newcommand\kF{\mat{K}^{\latentfunction}}
- \newcommand\kFTasks[2]{K^{\latentfunction}_{#1 #2}}
- \newcommand\latentfunctionS{\tilde{\latentfunction}}
- \newcommand\kernelFunctionS{\tilde{\kernelFunction}}
- \newcommand\latentfunctionB{\bar{\latentfunction}}
- \newcommand\kernelFunctionB{\bar{\kernelFunction}}
- \newcommand\pilonettoWeight{\alpha}
- \newcommand\wnsim{d}
- % ------ tommasi
- \newcommand\tommasiBeta{\beta}
- \newcommand\hyperplaneTarget{\hyperplane^{(\targetTask)}}
- \newcommand\hyperplaneSupport{\hyperplane^{(\supportTask)}}
- \newcommand\alphaSupport{\vec{\alpha}^{(\supportTask)}}
- \newcommand\alphaTarget{\vec{\alpha}^{(\targetTask)}}
- \newcommand\alphaTargetValue{\alpha^{(\targetTask)}}
- % ------ occ
- \newcommand\occScore{\nu}
- \newcommand\occThreshold{\xi}
- \newcommand\ftMatrix{\mat{\Phi}}
- \newcommand\kernelMatrixReg{\kernelMatrix_{\mss{reg}}}
- \newcommand\covarianceReg{\mat{C}_{\mss{reg}}}
- \newcommand\covarianceMatrix{\mat{C}}
- \newcommand\ftmean{\vec{\mu}_{\ftMatrix}}
- \newcommand\ftransformC{\tilde{\ftransform}}
- \newcommand\squashFunction{\Phi}
- \newcommand\radiusBall{R}
- \newcommand\meanBall{\vec{m}}
- % ------- local features
- \newcommand\dimensionLF{S}
- \newcommand\localfeature{\vec{l}}
- \newcommand\lfposition{\vec{p}}
- \newcommand\numberOfLFeat{W}
- \newcommand\lfSet{\mathcal{L}}
- % -------------- comparing histograms
- \newcommand\setA{\mathcal{A}}
- \newcommand\setB{\mathcal{B}}
- \newcommand\baseSet{\mathcal{U}}
- \newcommand\powerSet[1]{\mathcal{P}\left(#1\right)}
- \newcommand\distSet{d}
- \newcommand\clusterq{q}
- \newcommand\numberOfClusters{n_q}
- % -------------- BoF
- \newcommand\bofHist{\vec{h}}
- \newcommand\bofHistValue{h}
- \newcommand\bofIndex{j}
- % -------------- SIFT
- \newcommand\aimg{\mathfrak{g}}
- \newcommand\apoint{\vec{p}}
- \newcommand\gaussianFilter[1]{\mathfrak{h}_{#1}}
- \newcommand\gaussianScale{\sigma}
- \newcommand\illuminationFunction{u}
- \newcommand\greyValue{g}
- \newcommand\conv{*}
- % --------- pyramid matching
- \newcommand\matchingError{\error_{\pi}}
- \newcommand\pmkLevel{\ell}
- \newcommand\numPMKLevels{L}
- \newcommand\pmkHist{\vec{h}}
- \newcommand\pmkHistValue{h}
- \newcommand\pmkData{\mat{H}}
- \newcommand\pmkSimilarity{\kernelFunction^{\mss{PMK}}}
- \newcommand\pmkSimilarityNormalized{\tilde{\kernelFunction}^{\mss{PMK}}}
- \newcommand\pmkMatches{I}
- % --------- experiments
- \newcommand\numRuns{Z}
- \newcommand\confusionMatrix{\mat{C}}
- \newcommand\confusionMatrixValue{C}
- \newcommand\noeTest{\noe^{\mss{t}}}
- %\newcommand\recogRate{\error^{\mss{ov}}}
- %\newcommand\avgRecogRate{\error^{\mss{avg}}}
- \newcommand\recogRate{\text{err-ov}}
- \newcommand\avgRecogRate{\text{err-avg}}
- \newcommand\ctp{\text{TP}}
- \newcommand\cfp{\text{FP}}
- \newcommand\cfn{\text{FN}}
- \newcommand\ctn{\text{TN}}
- \newcommand\numPositives{\noe_{\mss{pos}}}
- \newcommand\numNegatives{\noe_{\mss{neg}}}
- \newcommand\tprate{\text{TPR}}
- \newcommand\fprate{\text{FPR}}
|