123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267 |
- /**
- * @file GPHIKClassifier.h
- * @brief Main interface for our GP HIK classifier (similar to the feature pool classifier interface in vislearning) (Interface)
- * @author Alexander Freytag, Erik Rodner
- * @date 01-02-2012 (dd-mm-yyyy)
- */
- #ifndef _NICE_GPHIKCLASSIFIERINCLUDE
- #define _NICE_GPHIKCLASSIFIERINCLUDE
- // STL includes
- #include <string>
- #include <limits>
- // NICE-core includes
- #include <core/basics/Config.h>
- #include <core/basics/Persistent.h>
- //
- #include <core/vector/SparseVectorT.h>
- // gp-hik-core includes
- #include "gp-hik-core/FMKGPHyperparameterOptimization.h"
- #include "gp-hik-core/OnlineLearnable.h"
- #include "gp-hik-core/parameterizedFunctions/ParameterizedFunction.h"
- namespace NICE {
-
- /**
- * @class GPHIKClassifier
- * @brief Main interface for our GP HIK classifier (similar to the feature pool classifier interface in vislearning)
- * @author Alexander Freytag, Erik Rodner
- */
-
- class GPHIKClassifier : public NICE::Persistent, public NICE::OnlineLearnable
- {
- protected:
-
- /////////////////////////
- /////////////////////////
- // PROTECTED VARIABLES //
- /////////////////////////
- /////////////////////////
-
- // output/debug related settings
-
- /** verbose flag for useful output*/
- bool verbose;
- /** debug flag for several outputs useful for debugging*/
- bool debug;
-
- // general specifications
-
- /** Header in configfile where variable settings are stored */
- std::string confSection;
- /** Configuration file specifying variable settings */
- NICE::Config *confCopy;
-
- // internal objects
-
- /** Main object doing all the jobs: training, classification, optimization, ... */
- NICE::FMKGPHyperparameterOptimization *gphyper;
-
- /** Possibility for transforming feature values, parameters can be optimized */
- NICE::ParameterizedFunction *pf;
-
-
-
-
- /** Gaussian label noise for model regularization */
- double noise;
- enum VarianceApproximation{
- APPROXIMATE_ROUGH,
- APPROXIMATE_FINE,
- EXACT,
- NONE
- };
-
- /** Which technique for variance approximations shall be used */
- VarianceApproximation varianceApproximation;
-
- /**compute the uncertainty prediction during classification?*/
- bool uncertaintyPredictionForClassification;
-
- /////////////////////////
- /////////////////////////
- // PROTECTED METHODS //
- /////////////////////////
- /////////////////////////
-
- /**
- * @brief Setup internal variables and objects used
- * @author Alexander Freytag
- * @param conf Config file to specify variable settings
- * @param s_confSection
- */
- void init(const NICE::Config *conf, const std::string & s_confSection);
-
- public:
- /**
- * @brief standard constructor
- * @author Alexander Freytag
- */
- GPHIKClassifier( const NICE::Config *conf = NULL, const std::string & s_confSection = "GPHIKClassifier" );
-
- /**
- * @brief simple destructor
- * @author Alexander Freytag
- */
- ~GPHIKClassifier();
-
- ///////////////////// ///////////////////// /////////////////////
- // GET / SET
- ///////////////////// ///////////////////// /////////////////////
-
- /**
- * @brief Return currently known class numbers
- * @author Alexander Freytag
- */
- std::set<int> getKnownClassNumbers ( ) const;
-
- ///////////////////// ///////////////////// /////////////////////
- // CLASSIFIER STUFF
- ///////////////////// ///////////////////// /////////////////////
-
- /**
- * @brief classify a given example with the previously learnt model
- * @date 19-06-2012 (dd-mm-yyyy)
- * @author Alexander Freytag
- * @param example (SparseVector) to be classified given in a sparse representation
- * @param result (int) class number of most likely class
- * @param scores (SparseVector) classification scores for known classes
- */
- void classify ( const NICE::SparseVector * example, int & result, NICE::SparseVector & scores ) const;
-
- /**
- * @brief classify a given example with the previously learnt model
- * @date 19-06-2012 (dd-mm-yyyy)
- * @author Alexander Freytag
- * @param example (SparseVector) to be classified given in a sparse representation
- * @param result (int) class number of most likely class
- * @param scores (SparseVector) classification scores for known classes
- * @param uncertainty (double*) predictive variance of the classification result, if computed
- */
- void classify ( const NICE::SparseVector * example, int & result, NICE::SparseVector & scores, double & uncertainty ) const;
-
- /**
- * @brief classify a given example with the previously learnt model
- * NOTE: whenever possible, you should the sparse version to obtain significantly smaller computation times*
- * @date 18-06-2013 (dd-mm-yyyy)
- * @author Alexander Freytag
- * @param example (non-sparse Vector) to be classified given in a non-sparse representation
- * @param result (int) class number of most likely class
- * @param scores (SparseVector) classification scores for known classes
- */
- void classify ( const NICE::Vector * example, int & result, NICE::SparseVector & scores ) const;
-
- /**
- * @brief classify a given example with the previously learnt model
- * NOTE: whenever possible, you should the sparse version to obtain significantly smaller computation times
- * @date 18-06-2013 (dd-mm-yyyy)
- * @author Alexander Freytag
- * @param example (non-sparse Vector) to be classified given in a non-sparse representation
- * @param result (int) class number of most likely class
- * @param scores (SparseVector) classification scores for known classes
- * @param uncertainty (double) predictive variance of the classification result, if computed
- */
- void classify ( const NICE::Vector * example, int & result, NICE::SparseVector & scores, double & uncertainty ) const;
- /**
- * @brief train this classifier using a given set of examples and a given set of binary label vectors
- * @date 18-10-2012 (dd-mm-yyyy)
- * @author Alexander Freytag
- * @param examples (std::vector< NICE::SparseVector *>) training data given in a sparse representation
- * @param labels (Vector) class labels (multi-class)
- */
- void train ( const std::vector< const NICE::SparseVector *> & examples, const NICE::Vector & labels );
-
- /**
- * @brief train this classifier using a given set of examples and a given set of binary label vectors
- * @date 19-06-2012 (dd-mm-yyyy)
- * @author Alexander Freytag
- * @param examples examples to use given in a sparse data structure
- * @param binLabels corresponding binary labels with class no. There is no need here that every examples has only on positive entry in this set (1,-1)
- */
- void train ( const std::vector< const NICE::SparseVector *> & examples, std::map<int, NICE::Vector> & binLabels );
-
- /**
- * @brief Clone classifier object
- * @author Alexander Freytag
- */
- GPHIKClassifier *clone () const;
- /**
- * @brief prediction of classification uncertainty
- * @date 19-06-2012 (dd-mm-yyyy)
- * @author Alexander Freytag
- * @param examples example for which the classification uncertainty shall be predicted, given in a sparse representation
- * @param uncertainty contains the resulting classification uncertainty
- */
- void predictUncertainty( const NICE::SparseVector * example, double & uncertainty ) const;
-
- /**
- * @brief prediction of classification uncertainty
- * @date 19-12-2013 (dd-mm-yyyy)
- * @author Alexander Freytag
- * @param examples example for which the classification uncertainty shall be predicted, given in a non-sparse representation
- * @param uncertainty contains the resulting classification uncertainty
- */
- void predictUncertainty( const NICE::Vector * example, double & uncertainty ) const;
-
- ///////////////////// INTERFACE PERSISTENT /////////////////////
- // interface specific methods for store and restore
- ///////////////////// INTERFACE PERSISTENT /////////////////////
-
- /**
- * @brief Load classifier from external file (stream)
- * @author Alexander Freytag
- */
- void restore ( std::istream & is, int format = 0 );
-
- /**
- * @brief Save classifier to external file (stream)
- * @author Alexander Freytag
- */
- void store ( std::ostream & os, int format = 0 ) const;
-
- /**
- * @brief Clear classifier object
- * @author Alexander Freytag
- */
- void clear ();
-
-
- ///////////////////// INTERFACE ONLINE LEARNABLE /////////////////////
- // interface specific methods for incremental extensions
- ///////////////////// INTERFACE ONLINE LEARNABLE /////////////////////
-
- /**
- * @brief add a new example
- * @author Alexander Freytag
- */
- virtual void addExample( const NICE::SparseVector * example,
- const double & label,
- const bool & performOptimizationAfterIncrement = true
- );
-
- /**
- * @brief add several new examples
- * @author Alexander Freytag
- */
- virtual void addMultipleExamples( const std::vector< const NICE::SparseVector * > & newExamples,
- const NICE::Vector & newLabels,
- const bool & performOptimizationAfterIncrement = true
- );
- };
- }
- #endif
|