TestGPHIKOnlineLearnable.cpp 22 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651
  1. /**
  2. * @file TestGPHIKOnlineLearnable.cpp
  3. * @brief CppUnit-Testcase to verify that GPHIKClassifier methods herited from Persistent (store and restore) work as desired.
  4. * @author Alexander Freytag
  5. * @date 21-12-2013
  6. */
  7. #ifdef NICE_USELIB_CPPUNIT
  8. // STL includes
  9. #include <iostream>
  10. #include <vector>
  11. // NICE-core includes
  12. #include <core/basics/Config.h>
  13. #include <core/basics/Timer.h>
  14. // gp-hik-core includes
  15. #include "gp-hik-core/GPHIKClassifier.h"
  16. #include "TestGPHIKOnlineLearnable.h"
  17. using namespace std; //C basics
  18. using namespace NICE; // nice-core
  19. const bool verboseStartEnd = true;
  20. const bool verbose = false;
  21. CPPUNIT_TEST_SUITE_REGISTRATION( TestGPHIKOnlineLearnable );
  22. void TestGPHIKOnlineLearnable::setUp() {
  23. }
  24. void TestGPHIKOnlineLearnable::tearDown() {
  25. }
  26. void readData ( const std::string filename, NICE::Matrix & data, NICE::Vector & yBin, NICE::Vector & yMulti )
  27. {
  28. std::ifstream ifs ( filename.c_str() , ios::in );
  29. if ( ifs.good() )
  30. {
  31. ifs >> data;
  32. ifs >> yBin;
  33. ifs >> yMulti;
  34. ifs.close();
  35. }
  36. else
  37. {
  38. std::cerr << "Unable to read data from file " << filename << " -- aborting." << std::endl;
  39. CPPUNIT_ASSERT ( ifs.good() );
  40. }
  41. }
  42. void prepareLabelMappings (std::map<int,int> & mapClNoToIdxTrain, const GPHIKClassifier * classifier, std::map<int,int> & mapClNoToIdxTest, const NICE::Vector & yMultiTest)
  43. {
  44. // determine classes known during training and corresponding mapping
  45. // thereby allow for non-continous class labels
  46. std::set<int> classesKnownTraining = classifier->getKnownClassNumbers();
  47. int noClassesKnownTraining ( classesKnownTraining.size() );
  48. std::set<int>::const_iterator clTrIt = classesKnownTraining.begin();
  49. for ( int i=0; i < noClassesKnownTraining; i++, clTrIt++ )
  50. mapClNoToIdxTrain.insert ( std::pair<int,int> ( *clTrIt, i ) );
  51. // determine classes known during testing and corresponding mapping
  52. // thereby allow for non-continous class labels
  53. std::set<int> classesKnownTest;
  54. classesKnownTest.clear();
  55. // determine which classes we have in our label vector
  56. // -> MATLAB: myClasses = unique(y);
  57. for ( NICE::Vector::const_iterator it = yMultiTest.begin(); it != yMultiTest.end(); it++ )
  58. {
  59. if ( classesKnownTest.find ( *it ) == classesKnownTest.end() )
  60. {
  61. classesKnownTest.insert ( *it );
  62. }
  63. }
  64. int noClassesKnownTest ( classesKnownTest.size() );
  65. std::set<int>::const_iterator clTestIt = classesKnownTest.begin();
  66. for ( int i=0; i < noClassesKnownTest; i++, clTestIt++ )
  67. mapClNoToIdxTest.insert ( std::pair<int,int> ( *clTestIt, i ) );
  68. }
  69. void evaluateClassifier ( NICE::Matrix & confusionMatrix,
  70. const NICE::GPHIKClassifier * classifier,
  71. const NICE::Matrix & data,
  72. const NICE::Vector & yMulti,
  73. const std::map<int,int> & mapClNoToIdxTrain,
  74. const std::map<int,int> & mapClNoToIdxTest
  75. )
  76. {
  77. int i_loopEnd ( (int)data.rows() );
  78. for (int i = 0; i < i_loopEnd ; i++)
  79. {
  80. NICE::Vector example ( data.getRow(i) );
  81. NICE::SparseVector scores;
  82. int result;
  83. // classify with incrementally trained classifier
  84. classifier->classify( &example, result, scores );
  85. confusionMatrix( mapClNoToIdxTrain.find(result)->second, mapClNoToIdxTest.find(yMulti[i])->second ) += 1.0;
  86. }
  87. }
  88. void TestGPHIKOnlineLearnable::testOnlineLearningStartEmpty()
  89. {
  90. if (verboseStartEnd)
  91. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningStartEmpty ===================== " << std::endl;
  92. NICE::Config conf;
  93. conf.sB ( "GPHIKClassifier", "eig_verbose", false);
  94. conf.sS ( "GPHIKClassifier", "optimization_method", "downhillsimplex");
  95. std::string s_trainData = conf.gS( "main", "trainData", "toyExampleSmallScaleTrain.data" );
  96. //------------- read the training data --------------
  97. NICE::Matrix dataTrain;
  98. NICE::Vector yBinTrain;
  99. NICE::Vector yMultiTrain;
  100. readData ( s_trainData, dataTrain, yBinTrain, yMultiTrain );
  101. //----------------- convert data to sparse data structures ---------
  102. std::vector< const NICE::SparseVector *> examplesTrain;
  103. examplesTrain.resize( dataTrain.rows() );
  104. std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin();
  105. for (int i = 0; i < (int)dataTrain.rows(); i++, exTrainIt++)
  106. {
  107. *exTrainIt = new NICE::SparseVector( dataTrain.getRow(i) );
  108. }
  109. //create classifier object
  110. NICE::GPHIKClassifier * classifier;
  111. classifier = new NICE::GPHIKClassifier ( &conf );
  112. bool performOptimizationAfterIncrement ( false );
  113. // add training samples, but without running training method first
  114. classifier->addMultipleExamples ( examplesTrain,yMultiTrain, performOptimizationAfterIncrement );
  115. // create second object trained in the standard way
  116. NICE::GPHIKClassifier * classifierScratch = new NICE::GPHIKClassifier ( &conf );
  117. classifierScratch->train ( examplesTrain, yMultiTrain );
  118. // TEST both classifiers to produce equal results
  119. //------------- read the test data --------------
  120. NICE::Matrix dataTest;
  121. NICE::Vector yBinTest;
  122. NICE::Vector yMultiTest;
  123. std::string s_testData = conf.gS( "main", "testData", "toyExampleTest.data" );
  124. readData ( s_testData, dataTest, yBinTest, yMultiTest );
  125. // ------------------------------------------
  126. // ------------- PREPARATION --------------
  127. // ------------------------------------------
  128. // determine classes known during training/testing and corresponding mapping
  129. // thereby allow for non-continous class labels
  130. std::map<int,int> mapClNoToIdxTrain;
  131. std::map<int,int> mapClNoToIdxTest;
  132. prepareLabelMappings (mapClNoToIdxTrain, classifier, mapClNoToIdxTest, yMultiTest);
  133. NICE::Matrix confusionMatrix ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  134. NICE::Matrix confusionMatrixScratch ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  135. // ------------------------------------------
  136. // ------------- CLASSIFICATION --------------
  137. // ------------------------------------------
  138. evaluateClassifier ( confusionMatrix, classifier, dataTest, yMultiTest,
  139. mapClNoToIdxTrain,mapClNoToIdxTest );
  140. evaluateClassifier ( confusionMatrixScratch, classifierScratch, dataTest, yMultiTest,
  141. mapClNoToIdxTrain,mapClNoToIdxTest );
  142. // post-process confusion matrices
  143. confusionMatrix.normalizeColumnsL1();
  144. double arr ( confusionMatrix.trace()/confusionMatrix.cols() );
  145. confusionMatrixScratch.normalizeColumnsL1();
  146. double arrScratch ( confusionMatrixScratch.trace()/confusionMatrixScratch.cols() );
  147. if ( verbose )
  148. {
  149. std::cerr << "confusionMatrix: " << confusionMatrix << std::endl;
  150. std::cerr << "confusionMatrixScratch: " << confusionMatrixScratch << std::endl;
  151. }
  152. CPPUNIT_ASSERT_DOUBLES_EQUAL( arr, arrScratch, 1e-8);
  153. // don't waste memory
  154. delete classifier;
  155. delete classifierScratch;
  156. for (std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin(); exTrainIt != examplesTrain.end(); exTrainIt++)
  157. {
  158. delete *exTrainIt;
  159. }
  160. if (verboseStartEnd)
  161. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningStartEmpty done ===================== " << std::endl;
  162. }
  163. void TestGPHIKOnlineLearnable::testOnlineLearningOCCtoBinary()
  164. {
  165. if (verboseStartEnd)
  166. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningOCCtoBinary ===================== " << std::endl;
  167. NICE::Config conf;
  168. conf.sB ( "GPHIKClassifier", "eig_verbose", false);
  169. conf.sS ( "GPHIKClassifier", "optimization_method", "downhillsimplex");
  170. std::string s_trainData = conf.gS( "main", "trainData", "toyExampleSmallScaleTrain.data" );
  171. //------------- read the training data --------------
  172. NICE::Matrix dataTrain;
  173. NICE::Vector yBinTrain;
  174. NICE::Vector yMultiTrain;
  175. readData ( s_trainData, dataTrain, yBinTrain, yMultiTrain );
  176. //----------------- convert data to sparse data structures ---------
  177. std::vector< const NICE::SparseVector *> examplesTrain;
  178. std::vector< const NICE::SparseVector *> examplesTrainPlus;
  179. std::vector< const NICE::SparseVector *> examplesTrainMinus;
  180. examplesTrain.resize( dataTrain.rows() );
  181. std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin();
  182. for (int i = 0; i < (int)dataTrain.rows(); i++, exTrainIt++)
  183. {
  184. *exTrainIt = new NICE::SparseVector( dataTrain.getRow(i) );
  185. if ( yBinTrain[i] == 1 )
  186. {
  187. examplesTrainPlus.push_back ( *exTrainIt );
  188. }
  189. else
  190. {
  191. examplesTrainMinus.push_back ( *exTrainIt );
  192. }
  193. }
  194. NICE::Vector yBinPlus ( examplesTrainPlus.size(), 1 ) ;
  195. NICE::Vector yBinMinus ( examplesTrainMinus.size(), 0 );
  196. //create classifier object
  197. NICE::GPHIKClassifier * classifier;
  198. classifier = new NICE::GPHIKClassifier ( &conf );
  199. bool performOptimizationAfterIncrement ( false );
  200. // training with examples for positive class only
  201. classifier->train ( examplesTrainPlus, yBinPlus );
  202. // add samples for negative class, thereby going from OCC to binary setting
  203. classifier->addMultipleExamples ( examplesTrainMinus, yBinMinus, performOptimizationAfterIncrement );
  204. // create second object trained in the standard way
  205. NICE::GPHIKClassifier * classifierScratch = new NICE::GPHIKClassifier ( &conf );
  206. classifierScratch->train ( examplesTrain, yBinTrain );
  207. // TEST both classifiers to produce equal results
  208. //------------- read the test data --------------
  209. NICE::Matrix dataTest;
  210. NICE::Vector yBinTest;
  211. NICE::Vector yMultiTest;
  212. std::string s_testData = conf.gS( "main", "testData", "toyExampleTest.data" );
  213. readData ( s_testData, dataTest, yBinTest, yMultiTest );
  214. // ------------------------------------------
  215. // ------------- PREPARATION --------------
  216. // ------------------------------------------
  217. // determine classes known during training/testing and corresponding mapping
  218. // thereby allow for non-continous class labels
  219. std::map<int,int> mapClNoToIdxTrain;
  220. std::map<int,int> mapClNoToIdxTest;
  221. prepareLabelMappings (mapClNoToIdxTrain, classifier, mapClNoToIdxTest, yMultiTest);
  222. NICE::Matrix confusionMatrix ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  223. NICE::Matrix confusionMatrixScratch ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  224. // ------------------------------------------
  225. // ------------- CLASSIFICATION --------------
  226. // ------------------------------------------
  227. evaluateClassifier ( confusionMatrix, classifier, dataTest, yBinTest,
  228. mapClNoToIdxTrain,mapClNoToIdxTest );
  229. evaluateClassifier ( confusionMatrixScratch, classifierScratch, dataTest, yBinTest,
  230. mapClNoToIdxTrain,mapClNoToIdxTest );
  231. // post-process confusion matrices
  232. confusionMatrix.normalizeColumnsL1();
  233. double arr ( confusionMatrix.trace()/confusionMatrix.cols() );
  234. confusionMatrixScratch.normalizeColumnsL1();
  235. double arrScratch ( confusionMatrixScratch.trace()/confusionMatrixScratch.cols() );
  236. if ( verbose )
  237. {
  238. std::cerr << "confusionMatrix: " << confusionMatrix << std::endl;
  239. std::cerr << "confusionMatrixScratch: " << confusionMatrixScratch << std::endl;
  240. }
  241. CPPUNIT_ASSERT_DOUBLES_EQUAL( arr, arrScratch, 1e-8);
  242. // don't waste memory
  243. delete classifier;
  244. delete classifierScratch;
  245. for (std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin(); exTrainIt != examplesTrain.end(); exTrainIt++)
  246. {
  247. delete *exTrainIt;
  248. }
  249. if (verboseStartEnd)
  250. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningOCCtoBinary done ===================== " << std::endl;
  251. }
  252. void TestGPHIKOnlineLearnable::testOnlineLearningBinarytoMultiClass()
  253. {
  254. if (verboseStartEnd)
  255. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningBinarytoMultiClass ===================== " << std::endl;
  256. NICE::Config conf;
  257. conf.sB ( "GPHIKClassifier", "eig_verbose", false);
  258. conf.sS ( "GPHIKClassifier", "optimization_method", "downhillsimplex");
  259. std::string s_trainData = conf.gS( "main", "trainData", "toyExampleSmallScaleTrain.data" );
  260. //------------- read the training data --------------
  261. NICE::Matrix dataTrain;
  262. NICE::Vector yBinTrain;
  263. NICE::Vector yMultiTrain;
  264. readData ( s_trainData, dataTrain, yBinTrain, yMultiTrain );
  265. //----------------- convert data to sparse data structures ---------
  266. std::vector< const NICE::SparseVector *> examplesTrain;
  267. std::vector< const NICE::SparseVector *> examplesTrain12;
  268. std::vector< const NICE::SparseVector *> examplesTrain3;
  269. NICE::Vector yMulti12 ( yMultiTrain.size(), 1 ) ;
  270. NICE::Vector yMulti3 ( yMultiTrain.size(), 1 ) ;
  271. int cnt12 ( 0 );
  272. int cnt3 ( 0 );
  273. examplesTrain.resize( dataTrain.rows() );
  274. std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin();
  275. for (int i = 0; i < (int)dataTrain.rows(); i++, exTrainIt++)
  276. {
  277. *exTrainIt = new NICE::SparseVector( dataTrain.getRow(i) );
  278. if ( ( yMultiTrain[i] == 0 ) || ( yMultiTrain[i] == 1 ) )
  279. {
  280. examplesTrain12.push_back ( *exTrainIt );
  281. yMulti12[ cnt12 ] = yMultiTrain[i];
  282. cnt12++;
  283. }
  284. else
  285. {
  286. examplesTrain3.push_back ( *exTrainIt );
  287. yMulti3[cnt3] = 2;
  288. cnt3++;
  289. }
  290. }
  291. yMulti12.resize ( examplesTrain12.size() );
  292. yMulti3.resize ( examplesTrain3.size() );
  293. //create classifier object
  294. NICE::GPHIKClassifier * classifier;
  295. classifier = new NICE::GPHIKClassifier ( &conf );
  296. bool performOptimizationAfterIncrement ( false );
  297. // training with examples for positive class only
  298. classifier->train ( examplesTrain12, yMulti12 );
  299. // add samples for negative class, thereby going from OCC to binary setting
  300. classifier->addMultipleExamples ( examplesTrain3, yMulti3, performOptimizationAfterIncrement );
  301. // create second object trained in the standard way
  302. NICE::GPHIKClassifier * classifierScratch = new NICE::GPHIKClassifier ( &conf );
  303. classifierScratch->train ( examplesTrain, yMultiTrain );
  304. // TEST both classifiers to produce equal results
  305. //------------- read the test data --------------
  306. NICE::Matrix dataTest;
  307. NICE::Vector yBinTest;
  308. NICE::Vector yMultiTest;
  309. std::string s_testData = conf.gS( "main", "testData", "toyExampleTest.data" );
  310. readData ( s_testData, dataTest, yBinTest, yMultiTest );
  311. // ------------------------------------------
  312. // ------------- PREPARATION --------------
  313. // ------------------------------------------
  314. // determine classes known during training/testing and corresponding mapping
  315. // thereby allow for non-continous class labels
  316. std::map<int,int> mapClNoToIdxTrain;
  317. std::map<int,int> mapClNoToIdxTest;
  318. prepareLabelMappings (mapClNoToIdxTrain, classifier, mapClNoToIdxTest, yMultiTest);
  319. NICE::Matrix confusionMatrix ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  320. NICE::Matrix confusionMatrixScratch ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  321. // ------------------------------------------
  322. // ------------- CLASSIFICATION --------------
  323. // ------------------------------------------
  324. evaluateClassifier ( confusionMatrix, classifier, dataTest, yMultiTest,
  325. mapClNoToIdxTrain,mapClNoToIdxTest );
  326. evaluateClassifier ( confusionMatrixScratch, classifierScratch, dataTest, yMultiTest,
  327. mapClNoToIdxTrain,mapClNoToIdxTest );
  328. // post-process confusion matrices
  329. confusionMatrix.normalizeColumnsL1();
  330. double arr ( confusionMatrix.trace()/confusionMatrix.cols() );
  331. confusionMatrixScratch.normalizeColumnsL1();
  332. double arrScratch ( confusionMatrixScratch.trace()/confusionMatrixScratch.cols() );
  333. if ( verbose )
  334. {
  335. std::cerr << "confusionMatrix: " << confusionMatrix << std::endl;
  336. std::cerr << "confusionMatrixScratch: " << confusionMatrixScratch << std::endl;
  337. }
  338. CPPUNIT_ASSERT_DOUBLES_EQUAL( arr, arrScratch, 1e-8);
  339. // don't waste memory
  340. delete classifier;
  341. delete classifierScratch;
  342. for (std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin(); exTrainIt != examplesTrain.end(); exTrainIt++)
  343. {
  344. delete *exTrainIt;
  345. }
  346. if (verboseStartEnd)
  347. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningBinarytoMultiClass done ===================== " << std::endl;
  348. }
  349. void TestGPHIKOnlineLearnable::testOnlineLearningMultiClass()
  350. {
  351. if (verboseStartEnd)
  352. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningMultiClass ===================== " << std::endl;
  353. NICE::Config conf;
  354. conf.sB ( "GPHIKClassifier", "eig_verbose", false);
  355. conf.sS ( "GPHIKClassifier", "optimization_method", "downhillsimplex");//downhillsimplex greedy
  356. std::string s_trainData = conf.gS( "main", "trainData", "toyExampleSmallScaleTrain.data" );
  357. //------------- read the training data --------------
  358. NICE::Matrix dataTrain;
  359. NICE::Vector yBinTrain;
  360. NICE::Vector yMultiTrain;
  361. readData ( s_trainData, dataTrain, yBinTrain, yMultiTrain );
  362. //----------------- convert data to sparse data structures ---------
  363. std::vector< const NICE::SparseVector *> examplesTrain;
  364. examplesTrain.resize( dataTrain.rows()-1 );
  365. std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin();
  366. for (int i = 0; i < (int)dataTrain.rows()-1; i++, exTrainIt++)
  367. {
  368. *exTrainIt = new NICE::SparseVector( dataTrain.getRow(i) );
  369. }
  370. // TRAIN INITIAL CLASSIFIER FROM SCRATCH
  371. NICE::GPHIKClassifier * classifier;
  372. classifier = new NICE::GPHIKClassifier ( &conf );
  373. //use all but the first example for training and add the first one lateron
  374. NICE::Vector yMultiRelevantTrain ( yMultiTrain.getRangeRef( 0, yMultiTrain.size()-2 ) );
  375. classifier->train ( examplesTrain , yMultiRelevantTrain );
  376. // RUN INCREMENTAL LEARNING
  377. bool performOptimizationAfterIncrement ( true );
  378. NICE::SparseVector * exampleToAdd = new NICE::SparseVector ( dataTrain.getRow( (int)dataTrain.rows()-1 ) );
  379. classifier->addExample ( exampleToAdd, yMultiTrain[ (int)dataTrain.rows()-2 ], performOptimizationAfterIncrement );
  380. if ( verbose )
  381. std::cerr << "label of example to add: " << yMultiTrain[ (int)dataTrain.rows()-1 ] << std::endl;
  382. // TRAIN SECOND CLASSIFIER FROM SCRATCH USING THE SAME OVERALL AMOUNT OF EXAMPLES
  383. examplesTrain.push_back( exampleToAdd );
  384. NICE::GPHIKClassifier * classifierScratch = new NICE::GPHIKClassifier ( &conf );
  385. classifierScratch->train ( examplesTrain, yMultiTrain );
  386. if ( verbose )
  387. std::cerr << "trained both classifiers - now start evaluating them" << std::endl;
  388. // TEST that both classifiers produce equal store-files
  389. std::string s_destination_save_IL ( "myClassifierIL.txt" );
  390. std::filebuf fbOut;
  391. fbOut.open ( s_destination_save_IL.c_str(), ios::out );
  392. std::ostream os (&fbOut);
  393. //
  394. classifier->store( os );
  395. //
  396. fbOut.close();
  397. std::string s_destination_save_scratch ( "myClassifierScratch.txt" );
  398. std::filebuf fbOutScratch;
  399. fbOutScratch.open ( s_destination_save_scratch.c_str(), ios::out );
  400. std::ostream osScratch (&fbOutScratch);
  401. //
  402. classifierScratch->store( osScratch );
  403. //
  404. fbOutScratch.close();
  405. // TEST both classifiers to produce equal results
  406. //------------- read the test data --------------
  407. NICE::Matrix dataTest;
  408. NICE::Vector yBinTest;
  409. NICE::Vector yMultiTest;
  410. std::string s_testData = conf.gS( "main", "testData", "toyExampleTest.data" );
  411. readData ( s_testData, dataTest, yBinTest, yMultiTest );
  412. // ------------------------------------------
  413. // ------------- PREPARATION --------------
  414. // ------------------------------------------
  415. // determine classes known during training/testing and corresponding mapping
  416. // thereby allow for non-continous class labels
  417. std::map<int,int> mapClNoToIdxTrain;
  418. std::map<int,int> mapClNoToIdxTest;
  419. prepareLabelMappings (mapClNoToIdxTrain, classifier, mapClNoToIdxTest, yMultiTest);
  420. NICE::Matrix confusionMatrix ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  421. NICE::Matrix confusionMatrixScratch ( mapClNoToIdxTrain.size(), mapClNoToIdxTest.size(), 0.0);
  422. // ------------------------------------------
  423. // ------------- CLASSIFICATION --------------
  424. // ------------------------------------------
  425. evaluateClassifier ( confusionMatrix, classifier, dataTest, yMultiTest,
  426. mapClNoToIdxTrain,mapClNoToIdxTest );
  427. evaluateClassifier ( confusionMatrixScratch, classifierScratch, dataTest, yMultiTest,
  428. mapClNoToIdxTrain,mapClNoToIdxTest );
  429. // post-process confusion matrices
  430. confusionMatrix.normalizeColumnsL1();
  431. double arr ( confusionMatrix.trace()/confusionMatrix.cols() );
  432. confusionMatrixScratch.normalizeColumnsL1();
  433. double arrScratch ( confusionMatrixScratch.trace()/confusionMatrixScratch.cols() );
  434. if ( verbose )
  435. {
  436. std::cerr << "confusionMatrix: " << confusionMatrix << std::endl;
  437. std::cerr << "confusionMatrixScratch: " << confusionMatrixScratch << std::endl;
  438. }
  439. CPPUNIT_ASSERT_DOUBLES_EQUAL( arr, arrScratch, 1e-8);
  440. // don't waste memory
  441. delete classifier;
  442. delete classifierScratch;
  443. for (std::vector< const NICE::SparseVector *>::iterator exTrainIt = examplesTrain.begin(); exTrainIt != examplesTrain.end(); exTrainIt++)
  444. {
  445. delete *exTrainIt;
  446. }
  447. if (verboseStartEnd)
  448. std::cerr << "================== TestGPHIKOnlineLearnable::testOnlineLearningMultiClass done ===================== " << std::endl;
  449. }
  450. #endif