123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560 |
- namespace NICE {
- /**
- * @class FastMinKernel
- * @brief Efficient GPs with HIK for classification by regression
- * @author Alexander Freytag
- */
-
- /** interface to FastMinKernel implementation*/
- class FastMinKernel : public NICE::Persistent, public OnlineLearnable
- {
- protected:
- /** number of examples */
- uint ui_n;
-
- uint ui_d;
-
- double d_noise;
-
-
- NICE::FeatureMatrixT<double> X_sorted;
-
-
- bool b_verbose;
-
- bool b_debug;
-
- void set_n(const uint & _n){this->ui_n = _n;};
-
-
- void set_d(const uint & _d){this->ui_d = _d;};
-
- void hik_prepare_kernel_multiplications(const std::vector<std::vector<double> > & _X,
- NICE::FeatureMatrixT<double> & _X_sorted,
- const uint & _dim = 0
- );
-
- void hik_prepare_kernel_multiplications ( const std::vector< const NICE::SparseVector * > & _X,
- NICE::FeatureMatrixT<double> & _X_sorted,
- const bool & _dimensionsOverExamples,
- const uint & _dim = 0
- );
-
- void randomPermutation(NICE::Vector & _permutation,
- const std::vector<uint> & _oldIndices,
- const uint & _newSize
- ) const;
-
- enum ApproximationScheme{ MEDIAN = 0, EXPECTATION=1};
- ApproximationScheme approxScheme;
- public:
-
-
-
-
-
- FastMinKernel();
-
-
- FastMinKernel( const std::vector<std::vector<double> > & _X,
- const double _noise ,
- const bool _debug = false,
- const uint & _dim = 0
- );
-
-
- FastMinKernel( const std::vector< const NICE::SparseVector * > & _X,
- const double _noise,
- const bool _debug = false,
- const bool & dimensionsOverExamples=false,
- const uint & _dim = 0
- );
-
- FastMinKernel ( const sparse_t & _X,
- const double _noise,
- const std::map<uint, uint> & _examples,
- const bool _debug = false ,
- const uint & _dim = 0);
-
- ~FastMinKernel();
-
-
-
-
-
-
- void setApproximationScheme(const ApproximationScheme & _approxScheme = MEDIAN) {approxScheme = _approxScheme;};
-
- virtual void setApproximationScheme(const int & _approxScheme = 0);
-
-
- uint get_n() const;
-
-
- uint get_d() const;
-
- double getSparsityRatio() const;
-
-
- void setVerbose( const bool & _verbose);
- bool getVerbose( ) const;
-
-
- void setDebug( const bool & _debug);
- bool getDebug( ) const;
-
-
-
-
-
-
-
- void applyFunctionToFeatureMatrix ( const NICE::ParameterizedFunction *_pf = NULL );
-
-
- void hik_prepare_alpha_multiplications(const NICE::Vector & _alpha,
- NICE::VVector & _A,
- NICE::VVector & _B
- ) const;
-
-
- void hik_kernel_multiply(const NICE::VVector & _A,
- const NICE::VVector & _B,
- const NICE::Vector & _alpha,
- NICE::Vector & _beta
- ) const;
- void hik_kernel_multiply_fast(const double *_Tlookup,
- const Quantization * _q,
- const NICE::Vector & _alpha,
- NICE::Vector & _beta
- ) const;
-
- void hik_kernel_sum(const NICE::VVector & _A,
- const NICE::VVector & _B,
- const NICE::SparseVector & _xstar,
- double & _beta,
- const ParameterizedFunction *_pf = NULL
- ) const;
-
-
- void hik_kernel_sum(const NICE::VVector & _A,
- const NICE::VVector & _B,
- const NICE::Vector & _xstar,
- double & _beta,
- const ParameterizedFunction *_pf = NULL
- ) const;
-
-
- void hik_kernel_sum_fast(const double* _Tlookup,
- const Quantization * _q,
- const NICE::Vector & _xstar,
- double & _beta
- ) const;
-
-
- void hik_kernel_sum_fast(const double *_Tlookup,
- const Quantization * _q,
- const NICE::SparseVector & _xstar,
- double & _beta
- ) const;
-
- double *hik_prepare_alpha_multiplications_fast(const NICE::VVector & _A,
- const NICE::VVector & _B,
- const Quantization * _q,
- const ParameterizedFunction *_pf = NULL
- ) const;
-
-
- double* hikPrepareLookupTable(const NICE::Vector & _alpha,
- const Quantization * _q,
- const ParameterizedFunction *_pf = NULL
- ) const;
-
- void hikUpdateLookupTable(double * _T,
- const double & _alphaNew,
- const double & _alphaOld,
- const uint & _idx,
- const Quantization * _q,
- const ParameterizedFunction *pf
- ) const;
-
- FeatureMatrix & featureMatrix(void) { return X_sorted; };
- const FeatureMatrix & featureMatrix(void) const { return X_sorted; };
-
-
- double *solveLin(const NICE::Vector & _y,
- NICE::Vector & _alpha,
- const Quantization * _q,
- const ParameterizedFunction *_pf = NULL,
- const bool & _useRandomSubsets = true,
- uint _maxIterations = 10000,
- const uint & _sizeOfRandomSubset = 0,
- double _minDelta = 1e-7,
- bool _timeAnalysis = false
- ) const;
-
- void setNoise ( double _noise ) { this->d_noise = _noise; }
-
- double getNoise (void) const { return this->d_noise; }
-
- double getFrobNormApprox();
-
-
-
- void hikPrepareKVNApproximation(NICE::VVector & _A) const;
-
-
- double * hikPrepareKVNApproximationFast(NICE::VVector & _A, const Quantization * _q, const ParameterizedFunction *_pf = NULL ) const;
-
-
- double* hikPrepareLookupTableForKVNApproximation(const Quantization * _q, const ParameterizedFunction *_pf = NULL) const;
-
-
-
-
-
-
- void hikComputeKVNApproximation(const NICE::VVector & _A, const NICE::SparseVector & _xstar, double & _norm, const ParameterizedFunction *_pf = NULL ) ;
-
-
- void hikComputeKVNApproximationFast(const double *_Tlookup, const Quantization * _q, const NICE::SparseVector & _xstar, double & _norm ) const;
-
-
- void hikComputeKernelVector( const NICE::SparseVector & _xstar, NICE::Vector & _kstar) const;
-
-
-
-
-
-
- void hikComputeKVNApproximation(const NICE::VVector & _A, const NICE::Vector & _xstar, double & _norm, const ParameterizedFunction *_pf = NULL ) ;
-
-
- void hikComputeKVNApproximationFast(const double *_Tlookup, const Quantization * _q, const NICE::Vector & _xstar, double & _norm ) const;
-
-
-
- void hikComputeKernelVector( const NICE::Vector & _xstar, NICE::Vector & _kstar) const;
-
-
- virtual void restore ( std::istream & _is, int _format = 0 );
- virtual void store ( std::ostream & _os, int _format = 0 ) const;
- virtual void clear ();
-
-
-
-
-
- virtual void addExample( const NICE::SparseVector * _example,
- const double & _label,
- const bool & _performOptimizationAfterIncrement = true
- );
- virtual void addMultipleExamples( const std::vector< const NICE::SparseVector * > & _newExamples,
- const NICE::Vector & _newLabels,
- const bool & _performOptimizationAfterIncrement = true
- );
-
-
-
- void addExample(const NICE::SparseVector * _example, const NICE::ParameterizedFunction *_pf = NULL);
-
-
-
- void addMultipleExamples(const std::vector<const NICE::SparseVector * > & _newExamples, const NICE::ParameterizedFunction *_pf = NULL);
-
-
-
- };
- }
|