[traintest] #dataset = /home/dbv/bilder/15Scenes/imagesScaled/ dataset = /home/luetz/data/images/15Scenes/imagesScaled/ classselection_train = "*" classselection_test = "*" examples_train = random * 100 examples_test = random * 50 [cache] #root = "/home/rodner/3rdparty/imagenetBOF/niceFeatures/" root = "/home/luetz/data/feature-storage/15Scenes/niceFeatures/" [GP_IL] trainExPerClass = 10 num_runs = 10 do_classification = true incrementalAddSize = 1 nrOfIncrements = 50 [main] # extension of all files in the cache ext = ".feat" [GPHIKClassifier] noise = 0.01 parameter_lower_bound = 0.5 parameter_upper_bound = 2.0 #--define the uncertainty prediction scheme-- # standatd predictive variance #uncertaintyPrediction = pred_variance # use the heuristic as proposed by Kapoor et al. uncertaintyPrediction = heuristic # no classification uncertainty at all? #uncertaintyPrediction = none #--define the computation scheme for the predictive variance, if needed-- #if we do not need any predictive variance for this experiment #varianceApproximation = none # predictive variance approximation useful for sparse features - really fast varianceApproximation = approximate_rough # predictive variance approximation with eigenvectors (finer) #varianceApproximation = approximate_fine #nrOfEigenvaluesToConsiderForVarApprox = 2 #exact computation of predictive variance #varianceApproximation = exact #--define the optimization method-- #optimization_method = none optimization_method = downhillsimplex #--stuff for the IterativeLinearSolver-- #ils_verbose = true