/** * @file testImageNetBinary.cpp * @brief perform ImageNet tests with binary classification * @author Erik Rodner * @date 01/04/2012 */ #include #ifdef NICE_USELIB_MATIO #include //---------- #include #include #include //---------- #include #include using namespace std; using namespace NICE; using namespace OBJREC; /** test the basic functionality of fast-hik hyperparameter optimization */ int main (int argc, char **argv) { std::set_terminate(__gnu_cxx::__verbose_terminate_handler); Config conf ( argc, argv ); string resultsfile = conf.gS("main", "results", "results.txt" ); int positiveClass = conf.gI("main", "positive_class"); cerr << "Positive class is " << positiveClass << endl; sparse_t data; NICE::Vector yl; cerr << "Reading ImageNet data ..." << endl; bool imageNetLocal = conf.gB("main", "imageNetLocal" , false); string imageNetPath; if (imageNetLocal) imageNetPath = "/users2/rodner/data/imagenet/devkit-1.0/"; else imageNetPath = "/home/dbv/bilder/imagenet/devkit-1.0/"; ImageNetData imageNet ( imageNetPath + "demo/" ); imageNet.getBatchData ( data, yl, "train", "training" ); uint n = yl.size(); cerr << "Performing hyperparameter optimization ... " << endl; set positives; set negatives; map< int, set > mysets; for ( uint i = 0 ; i < n; i++ ) mysets[ yl[i] ].insert ( i ); if ( mysets[ positiveClass ].size() == 0 ) fthrow(Exception, "Class " << positiveClass << " is not available."); // add our positive examples for ( set::const_iterator i = mysets[positiveClass].begin(); i != mysets[positiveClass].end(); i++ ) positives.insert ( *i ); int Nneg = conf.gI("main", "nneg", 1 ); for ( map >::const_iterator k = mysets.begin(); k != mysets.end(); k++ ) { int classno = k->first; if ( classno == positiveClass ) continue; const set & s = k->second; uint ind = 0; for ( set::const_iterator i = s.begin(); (i != s.end() && ind < Nneg); i++,ind++ ) negatives.insert ( *i ); } cerr << "Number of positive examples: " << positives.size() << endl; cerr << "Number of negative examples: " << negatives.size() << endl; map examples; Vector y ( yl.size() ); int ind = 0; for ( uint i = 0 ; i < yl.size(); i++ ) { if (positives.find(i) != positives.end()) { y[ examples.size() ] = 1.0; examples.insert( pair ( i, ind ) ); ind++; } else if ( negatives.find(i) != negatives.end() ) { y[ examples.size() ] = -1.0; examples.insert( pair ( i, ind ) ); ind++; } } y.resize( examples.size() ); cerr << "Examples: " << examples.size() << endl; cerr << "Putting everything in a feature matrix structure ..." << endl; FeatureMatrixT fm ( data, examples, 1000 ); cerr << "Writing file ..." << endl; ofstream ofs ( "train.txt", ios::out ); if ( !ofs.good() ) fthrow(Exception, "Unable to write to train.txt" ); // writing features for ( uint i = 0 ; i < fm.get_n(); i++ ) { ofs << (y[i] == 1.0) ? 1 : 0; for ( uint k = 0 ; k < fm.get_d(); k++ ) { double val = fm(k,i); if ( val != 0 ) { ofs << " " << k+1 << ":" << val; } } ofs << endl; } ofs.close(); // ------------------------------ TESTING ------------------------------ cerr << "Reading ImageNet test data files (takes some seconds)..." << endl; imageNet.preloadData ( "val", "testing" ); imageNet.loadExternalLabels ( imageNetPath + "data/ILSVRC2010_validation_ground_truth.txt" ); ofstream ofs_test ( "test.txt", ios::out ); if ( !ofs_test.good() ) fthrow(Exception, "Unable to write to test.txt" ); for ( uint i = 0 ; i < (uint)imageNet.getNumPreloadedExamples(); i++ ) { const SparseVector & svec = imageNet.getPreloadedExample ( i ); int classno_groundtruth = (((int)imageNet.getPreloadedLabel ( i )) == positiveClass) ? 1 : 0; ofs_test << ( classno_groundtruth ); for ( SparseVector::const_iterator k = svec.begin(); k != svec.end(); k++ ) ofs_test << " " << k->first+1 << ":" << k->second; ofs_test << endl; } ofs_test.close(); return 0; } #else int main (int argc, char **argv) { std::cerr << "MatIO library is missing in your system - this program will have no effect. " << std::endl; } #endif