testLogDetApproximation.cpp 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132
  1. /**
  2. * @file testLogDetApproximation.cpp
  3. * @brief
  4. * @author Alexander Freytag
  5. * @date 05-01-2012 (dd-mm-yyyy)
  6. */
  7. #include <iostream>
  8. #include <cstdlib>
  9. #include <ctime>
  10. #include <unistd.h>
  11. #include "core/vector/MatrixT.h"
  12. #include "core/vector/VectorT.h"
  13. #include "core/algebra/GenericMatrix.h"
  14. #include "core/algebra/EigValuesTRLAN.h"
  15. #include "core/algebra/GMStandard.h"
  16. #include "gp-hik-core/tools.h"
  17. #include "gp-hik-core/algebra/LogDetApproxBaiAndGolub.h"
  18. using namespace std;
  19. using namespace NICE;
  20. /**
  21. * @brief Printing main menu.
  22. * @author Alexander Freytag
  23. * @date 12/06/2011
  24. *
  25. * @return void
  26. **/
  27. void print_main_menu()
  28. {
  29. std::cerr << std::endl << " - test program for logDet Approximation" << std::endl;
  30. std::cerr << "Input options:" << std::endl;
  31. std::cerr << " -n <number> dimension of K"<< std::endl;
  32. std::cerr << " -v 1/0 verbose mode"<< std::endl;
  33. return;
  34. }
  35. int main (int argc, char* argv[])
  36. {
  37. int n (5);
  38. bool verbose(false);
  39. int rc;
  40. if (argc<2)
  41. {
  42. print_main_menu();
  43. return -1;
  44. }
  45. while ((rc=getopt(argc,argv,"n:v:h"))>=0)
  46. {
  47. switch(rc)
  48. {
  49. case 'n': n = atoi(optarg); break;
  50. case 'v': verbose = atoi(optarg); break;
  51. default: print_main_menu();
  52. }
  53. }
  54. if (verbose)
  55. {
  56. std::cerr << "Testing logDet Approximation for n = " << n << std::endl;
  57. }
  58. srand ( time(NULL) );
  59. NICE::Matrix ARand(generateRandomMatrix(n,n));
  60. NICE::Matrix A;
  61. // A shall be positive definite
  62. A.multiply(ARand, ARand, true);
  63. NICE::GMStandard genericA(A);
  64. //compute GT LogDet based on eigenvalues of A
  65. NICE::Vector eigenvalues;
  66. NICE::Matrix eigenvectors;
  67. try
  68. {
  69. NICE::EigValuesTRLAN eigValuesComputation;
  70. eigValuesComputation.getEigenvalues(genericA, eigenvalues,eigenvectors, n );
  71. }
  72. catch (...)
  73. {
  74. NICE::EVArnoldi eigValuesComputation;
  75. eigValuesComputation.getEigenvalues(genericA, eigenvalues,eigenvectors, n );
  76. }
  77. double logDetGT(0.0);
  78. for (int i = 0; i < n; i++)
  79. {
  80. logDetGT += log(eigenvalues[i]);
  81. }
  82. if (verbose)
  83. {
  84. std::cerr << "GT logDet: " << logDetGT << std::endl;
  85. }
  86. //replace this later on using only the k largest eigenvalues
  87. double frobNorm(A.squaredFrobeniusNorm());
  88. NICE::LogDetApproxBaiAndGolub logDetApproximator;
  89. double logDetApprox(logDetApproximator.getLogDetApproximation(A.trace(), frobNorm, eigenvalues.Max(), eigenvalues.Min(), n ) );
  90. if (verbose)
  91. {
  92. std::cerr << "logDetApprox: " << logDetApprox << std::endl;
  93. }
  94. double logDetApproxUpperBound(logDetApproximator.getLogDetApproximationUpperBound(A.trace(), frobNorm, eigenvalues.Max(), n ) );
  95. if (verbose)
  96. {
  97. std::cerr << "logDetApproxUpperBound: " << logDetApproxUpperBound << std::endl;
  98. }
  99. double logDetApproxLowerBound(logDetApproximator.getLogDetApproximationUpperBound(A.trace(), frobNorm, eigenvalues.Min(), n ) );
  100. if (verbose)
  101. {
  102. std::cerr << "logDetApproxLowerBound: " << logDetApproxLowerBound << std::endl;
  103. }
  104. return 0;
  105. }