// SLIC.cpp: implementation of the SLIC class. // // Copyright (C) Radhakrishna Achanta 2012 // All rights reserved // Email: firstname.lastname@epfl.ch ////////////////////////////////////////////////////////////////////// //#include "stdafx.h" #include #include #include #include #include "SLIC.h" ////////////////////////////////////////////////////////////////////// // Construction/Destruction ////////////////////////////////////////////////////////////////////// SLIC::SLIC() { m_lvec = NULL; m_avec = NULL; m_bvec = NULL; m_lvecvec = NULL; m_avecvec = NULL; m_bvecvec = NULL; } SLIC::~SLIC() { if (m_lvec) delete [] m_lvec; if (m_avec) delete [] m_avec; if (m_bvec) delete [] m_bvec; if (m_lvecvec) { for ( int d = 0; d < m_depth; d++ ) delete [] m_lvecvec[d]; delete [] m_lvecvec; } if (m_avecvec) { for ( int d = 0; d < m_depth; d++ ) delete [] m_avecvec[d]; delete [] m_avecvec; } if (m_bvecvec) { for ( int d = 0; d < m_depth; d++ ) delete [] m_bvecvec[d]; delete [] m_bvecvec; } } //============================================================================== /// RGB2XYZ /// /// sRGB (D65 illuninant assumption) to XYZ conversion //============================================================================== void SLIC::RGB2XYZ( const int& sR, const int& sG, const int& sB, double& X, double& Y, double& Z) { double R = sR/255.0; double G = sG/255.0; double B = sB/255.0; double r, g, b; if (R <= 0.04045) r = R/12.92; else r = pow((R+0.055)/1.055,2.4); if (G <= 0.04045) g = G/12.92; else g = pow((G+0.055)/1.055,2.4); if (B <= 0.04045) b = B/12.92; else b = pow((B+0.055)/1.055,2.4); X = r*0.4124564 + g*0.3575761 + b*0.1804375; Y = r*0.2126729 + g*0.7151522 + b*0.0721750; Z = r*0.0193339 + g*0.1191920 + b*0.9503041; } //=========================================================================== /// RGB2LAB //=========================================================================== void SLIC::RGB2LAB(const int& sR, const int& sG, const int& sB, double& lval, double& aval, double& bval) { //------------------------ // sRGB to XYZ conversion //------------------------ double X, Y, Z; RGB2XYZ(sR, sG, sB, X, Y, Z); //------------------------ // XYZ to LAB conversion //------------------------ double epsilon = 0.008856; //actual CIE standard double kappa = 903.3; //actual CIE standard double Xr = 0.950456; //reference white double Yr = 1.0; //reference white double Zr = 1.088754; //reference white double xr = X/Xr; double yr = Y/Yr; double zr = Z/Zr; double fx, fy, fz; if (xr > epsilon) fx = pow(xr, 1.0/3.0); else fx = (kappa*xr + 16.0)/116.0; if (yr > epsilon) fy = pow(yr, 1.0/3.0); else fy = (kappa*yr + 16.0)/116.0; if (zr > epsilon) fz = pow(zr, 1.0/3.0); else fz = (kappa*zr + 16.0)/116.0; lval = 116.0*fy-16.0; aval = 500.0*(fx-fy); bval = 200.0*(fy-fz); } //=========================================================================== /// DoRGBtoLABConversion /// /// For whole image: overlaoded floating point version //=========================================================================== void SLIC::DoRGBtoLABConversion( const unsigned int*& ubuff, double*& lvec, double*& avec, double*& bvec) { int sz = m_width*m_height; lvec = new double[sz]; avec = new double[sz]; bvec = new double[sz]; for ( int j = 0; j < sz; j++ ) { int r = (ubuff[j] >> 16) & 0xFF; int g = (ubuff[j] >> 8) & 0xFF; int b = (ubuff[j] ) & 0xFF; RGB2LAB( r, g, b, lvec[j], avec[j], bvec[j] ); } } //=========================================================================== /// DoRGBtoLABConversion /// /// For whole volume //=========================================================================== void SLIC::DoRGBtoLABConversion( unsigned int**& ubuff, double**& lvec, double**& avec, double**& bvec) { int sz = m_width*m_height; for ( int d = 0; d < m_depth; d++ ) { for ( int j = 0; j < sz; j++ ) { int r = (ubuff[d][j] >> 16) & 0xFF; int g = (ubuff[d][j] >> 8) & 0xFF; int b = (ubuff[d][j] ) & 0xFF; RGB2LAB( r, g, b, lvec[d][j], avec[d][j], bvec[d][j] ); } } } //================================================================================= /// DrawContoursAroundSegments /// /// Internal contour drawing option exists. One only needs to comment the if /// statement inside the loop that looks at neighbourhood. //================================================================================= void SLIC::DrawContoursAroundSegments( unsigned int*& ubuff, int*& labels, const int& width, const int& height, const unsigned int& color ) { const int dx8[8] = {-1, -1, 0, 1, 1, 1, 0, -1}; const int dy8[8] = { 0, -1, -1, -1, 0, 1, 1, 1}; /* int sz = width*height; vector istaken(sz, false); int mainindex(0); for( int j = 0; j < height; j++ ) { for( int k = 0; k < width; k++ ) { int np(0); for( int i = 0; i < 8; i++ ) { int x = k + dx8[i]; int y = j + dy8[i]; if( (x >= 0 && x < width) && (y >= 0 && y < height) ) { int index = y*width + x; if( false == istaken[index] )//comment this to obtain internal contours { if( labels[mainindex] != labels[index] ) np++; } } } if( np > 1 )//change to 2 or 3 for thinner lines { ubuff[mainindex] = color; istaken[mainindex] = true; } mainindex++; } }*/ int sz = width*height; vector istaken(sz, false); vector contourx(sz); vector contoury(sz); int mainindex(0); int cind(0); for ( int j = 0; j < height; j++ ) { for ( int k = 0; k < width; k++ ) { int np(0); for ( int i = 0; i < 8; i++ ) { int x = k + dx8[i]; int y = j + dy8[i]; if ( (x >= 0 && x < width) && (y >= 0 && y < height) ) { int index = y*width + x; //if( false == istaken[index] )//comment this to obtain internal contours { if ( labels[mainindex] != labels[index] ) np++; } } } if ( np > 1 ) { contourx[cind] = k; contoury[cind] = j; istaken[mainindex] = true; //img[mainindex] = color; cind++; } mainindex++; } } int numboundpix = cind;//int(contourx.size()); for ( int j = 0; j < numboundpix; j++ ) { int ii = contoury[j]*width + contourx[j]; ubuff[ii] = 0xffffff; for ( int n = 0; n < 8; n++ ) { int x = contourx[j] + dx8[n]; int y = contoury[j] + dy8[n]; if ( (x >= 0 && x < width) && (y >= 0 && y < height) ) { int ind = y*width + x; if (!istaken[ind]) ubuff[ind] = 0; } } } } //============================================================================== /// DetectLabEdges //============================================================================== void SLIC::DetectLabEdges( const double* lvec, const double* avec, const double* bvec, const int& width, const int& height, vector& edges) { int sz = width*height; edges.resize(sz,0); for ( int j = 1; j < height-1; j++ ) { for ( int k = 1; k < width-1; k++ ) { int i = j*width+k; double dx = (lvec[i-1]-lvec[i+1])*(lvec[i-1]-lvec[i+1]) + (avec[i-1]-avec[i+1])*(avec[i-1]-avec[i+1]) + (bvec[i-1]-bvec[i+1])*(bvec[i-1]-bvec[i+1]); double dy = (lvec[i-width]-lvec[i+width])*(lvec[i-width]-lvec[i+width]) + (avec[i-width]-avec[i+width])*(avec[i-width]-avec[i+width]) + (bvec[i-width]-bvec[i+width])*(bvec[i-width]-bvec[i+width]); //edges[i] = fabs(dx) + fabs(dy); edges[i] = dx*dx + dy*dy; } } } //=========================================================================== /// PerturbSeeds //=========================================================================== void SLIC::PerturbSeeds( vector& kseedsl, vector& kseedsa, vector& kseedsb, vector& kseedsx, vector& kseedsy, const vector& edges) { const int dx8[8] = {-1, -1, 0, 1, 1, 1, 0, -1}; const int dy8[8] = { 0, -1, -1, -1, 0, 1, 1, 1}; int numseeds = kseedsl.size(); for ( int n = 0; n < numseeds; n++ ) { int ox = kseedsx[n];//original x int oy = kseedsy[n];//original y int oind = oy*m_width + ox; int storeind = oind; for ( int i = 0; i < 8; i++ ) { int nx = ox+dx8[i];//new x int ny = oy+dy8[i];//new y if ( nx >= 0 && nx < m_width && ny >= 0 && ny < m_height) { int nind = ny*m_width + nx; if ( edges[nind] < edges[storeind]) { storeind = nind; } } } if (storeind != oind) { kseedsx[n] = storeind%m_width; kseedsy[n] = storeind/m_width; kseedsl[n] = m_lvec[storeind]; kseedsa[n] = m_avec[storeind]; kseedsb[n] = m_bvec[storeind]; } } } //=========================================================================== /// GetLABXYSeeds_ForGivenStepSize /// /// The k seed values are taken as uniform spatial pixel samples. //=========================================================================== void SLIC::GetLABXYSeeds_ForGivenStepSize( vector& kseedsl, vector& kseedsa, vector& kseedsb, vector& kseedsx, vector& kseedsy, const int& STEP, const bool& perturbseeds, const vector& edgemag) { const bool hexgrid = false; int numseeds(0); int n(0); //int xstrips = m_width/STEP; //int ystrips = m_height/STEP; int xstrips = (0.5+double(m_width)/double(STEP)); int ystrips = (0.5+double(m_height)/double(STEP)); int xerr = m_width - STEP*xstrips; if (xerr < 0) { xstrips--; xerr = m_width - STEP*xstrips; } int yerr = m_height - STEP*ystrips; if (yerr < 0) { ystrips--; yerr = m_height- STEP*ystrips; } double xerrperstrip = double(xerr)/double(xstrips); double yerrperstrip = double(yerr)/double(ystrips); int xoff = STEP/2; int yoff = STEP/2; //------------------------- numseeds = xstrips*ystrips; //------------------------- kseedsl.resize(numseeds); kseedsa.resize(numseeds); kseedsb.resize(numseeds); kseedsx.resize(numseeds); kseedsy.resize(numseeds); for ( int y = 0; y < ystrips; y++ ) { int ye = y*yerrperstrip; for ( int x = 0; x < xstrips; x++ ) { int xe = x*xerrperstrip; int seedx = (x*STEP+xoff+xe); if (hexgrid) { seedx = x*STEP+(xoff<<(y&0x1))+xe; //for hex grid sampling seedx = min(m_width-1,seedx); } int seedy = (y*STEP+yoff+ye); int i = seedy*m_width + seedx; kseedsl[n] = m_lvec[i]; kseedsa[n] = m_avec[i]; kseedsb[n] = m_bvec[i]; kseedsx[n] = seedx; kseedsy[n] = seedy; n++; } } if (perturbseeds) { PerturbSeeds(kseedsl, kseedsa, kseedsb, kseedsx, kseedsy, edgemag); } } //=========================================================================== /// GetKValues_LABXYZ /// /// The k seed values are taken as uniform spatial pixel samples. //=========================================================================== void SLIC::GetKValues_LABXYZ( vector& kseedsl, vector& kseedsa, vector& kseedsb, vector& kseedsx, vector& kseedsy, vector& kseedsz, const int& STEP) { const bool hexgrid = false; int numseeds(0); int n(0); int xstrips = (0.5+double(m_width)/double(STEP)); int ystrips = (0.5+double(m_height)/double(STEP)); int zstrips = (0.5+double(m_depth)/double(STEP)); int xerr = m_width - STEP*xstrips; if (xerr < 0) { xstrips--; xerr = m_width - STEP*xstrips; } int yerr = m_height - STEP*ystrips; if (yerr < 0) { ystrips--; yerr = m_height- STEP*ystrips; } int zerr = m_depth - STEP*zstrips; if (zerr < 0) { zstrips--; zerr = m_depth - STEP*zstrips; } double xerrperstrip = double(xerr)/double(xstrips); double yerrperstrip = double(yerr)/double(ystrips); double zerrperstrip = double(zerr)/double(zstrips); int xoff = STEP/2; int yoff = STEP/2; int zoff = STEP/2; //------------------------- numseeds = xstrips*ystrips*zstrips; //------------------------- kseedsl.resize(numseeds); kseedsa.resize(numseeds); kseedsb.resize(numseeds); kseedsx.resize(numseeds); kseedsy.resize(numseeds); kseedsz.resize(numseeds); for ( int z = 0; z < zstrips; z++ ) { int ze = z*zerrperstrip; int d = (z*STEP+zoff+ze); for ( int y = 0; y < ystrips; y++ ) { int ye = y*yerrperstrip; for ( int x = 0; x < xstrips; x++ ) { int xe = x*xerrperstrip; int i = (y*STEP+yoff+ye)*m_width + (x*STEP+xoff+xe); kseedsl[n] = m_lvecvec[d][i]; kseedsa[n] = m_avecvec[d][i]; kseedsb[n] = m_bvecvec[d][i]; kseedsx[n] = (x*STEP+xoff+xe); kseedsy[n] = (y*STEP+yoff+ye); kseedsz[n] = d; n++; } } } } //=========================================================================== /// PerformSuperpixelSLIC /// /// Performs k mean segmentation. It is fast because it looks locally, not /// over the entire image. //=========================================================================== void SLIC::PerformSuperpixelSLIC( vector& kseedsl, vector& kseedsa, vector& kseedsb, vector& kseedsx, vector& kseedsy, int*& klabels, const int& STEP, const vector& edgemag, const double& M) { int sz = m_width*m_height; const int numk = kseedsl.size(); //---------------- int offset = STEP; //if(STEP < 8) offset = STEP*1.5;//to prevent a crash due to a very small step size //---------------- vector clustersize(numk, 0); vector inv(numk, 0);//to store 1/clustersize[k] values vector sigmal(numk, 0); vector sigmaa(numk, 0); vector sigmab(numk, 0); vector sigmax(numk, 0); vector sigmay(numk, 0); vector distvec(sz, DBL_MAX); double invwt = 1.0/((STEP/M)*(STEP/M)); int x1, y1, x2, y2; double l, a, b; double dist; double distxy; for ( int itr = 0; itr < 10; itr++ ) { distvec.assign(sz, DBL_MAX); for ( int n = 0; n < numk; n++ ) { y1 = max(0.0, kseedsy[n]-offset); y2 = min((double)m_height, kseedsy[n]+offset); x1 = max(0.0, kseedsx[n]-offset); x2 = min((double)m_width, kseedsx[n]+offset); for ( int y = y1; y < y2; y++ ) { for ( int x = x1; x < x2; x++ ) { int i = y*m_width + x; l = m_lvec[i]; a = m_avec[i]; b = m_bvec[i]; dist = (l - kseedsl[n])*(l - kseedsl[n]) + (a - kseedsa[n])*(a - kseedsa[n]) + (b - kseedsb[n])*(b - kseedsb[n]); distxy = (x - kseedsx[n])*(x - kseedsx[n]) + (y - kseedsy[n])*(y - kseedsy[n]); //------------------------------------------------------------------------ dist += distxy*invwt;//dist = sqrt(dist) + sqrt(distxy*invwt);//this is more exact //------------------------------------------------------------------------ if ( dist < distvec[i] ) { distvec[i] = dist; klabels[i] = n; } } } } //----------------------------------------------------------------- // Recalculate the centroid and store in the seed values //----------------------------------------------------------------- //instead of reassigning memory on each iteration, just reset. sigmal.assign(numk, 0); sigmaa.assign(numk, 0); sigmab.assign(numk, 0); sigmax.assign(numk, 0); sigmay.assign(numk, 0); clustersize.assign(numk, 0); //------------------------------------ //edgesum.assign(numk, 0); //------------------------------------ { int ind(0); for ( int r = 0; r < m_height; r++ ) { for ( int c = 0; c < m_width; c++ ) { sigmal[klabels[ind]] += m_lvec[ind]; sigmaa[klabels[ind]] += m_avec[ind]; sigmab[klabels[ind]] += m_bvec[ind]; sigmax[klabels[ind]] += c; sigmay[klabels[ind]] += r; //------------------------------------ //edgesum[klabels[ind]] += edgemag[ind]; //------------------------------------ clustersize[klabels[ind]] += 1.0; ind++; } } } { for ( int k = 0; k < numk; k++ ) { if ( clustersize[k] <= 0 ) clustersize[k] = 1; inv[k] = 1.0/clustersize[k];//computing inverse now to multiply, than divide later } } { for ( int k = 0; k < numk; k++ ) { kseedsl[k] = sigmal[k]*inv[k]; kseedsa[k] = sigmaa[k]*inv[k]; kseedsb[k] = sigmab[k]*inv[k]; kseedsx[k] = sigmax[k]*inv[k]; kseedsy[k] = sigmay[k]*inv[k]; //------------------------------------ //edgesum[k] *= inv[k]; //------------------------------------ } } } } //=========================================================================== /// PerformSupervoxelSLIC /// /// Performs k mean segmentation. It is fast because it searches locally, not /// over the entire image. //=========================================================================== void SLIC::PerformSupervoxelSLIC( vector& kseedsl, vector& kseedsa, vector& kseedsb, vector& kseedsx, vector& kseedsy, vector& kseedsz, int**& klabels, const int& STEP, const double& compactness) { int sz = m_width*m_height; const int numk = kseedsl.size(); //int numitr(0); //---------------- int offset = STEP; //if(STEP < 8) offset = STEP*1.5;//to prevent a crash due to a very small step size //---------------- vector clustersize(numk, 0); vector inv(numk, 0);//to store 1/clustersize[k] values vector sigmal(numk, 0); vector sigmaa(numk, 0); vector sigmab(numk, 0); vector sigmax(numk, 0); vector sigmay(numk, 0); vector sigmaz(numk, 0); vector< double > initdouble(sz, DBL_MAX); vector< vector > distvec(m_depth, initdouble); //vector distvec(sz, DBL_MAX); double invwt = 1.0/((STEP/compactness)*(STEP/compactness));//compactness = 20.0 is usually good. int x1, y1, x2, y2, z1, z2; double l, a, b; double dist; double distxyz; for ( int itr = 0; itr < 5; itr++ ) { distvec.assign(m_depth, initdouble); for ( int n = 0; n < numk; n++ ) { y1 = max(0.0, kseedsy[n]-offset); y2 = min((double)m_height, kseedsy[n]+offset); x1 = max(0.0, kseedsx[n]-offset); x2 = min((double)m_width, kseedsx[n]+offset); z1 = max(0.0, kseedsz[n]-offset); z2 = min((double)m_depth, kseedsz[n]+offset); for ( int z = z1; z < z2; z++ ) { for ( int y = y1; y < y2; y++ ) { for ( int x = x1; x < x2; x++ ) { int i = y*m_width + x; l = m_lvecvec[z][i]; a = m_avecvec[z][i]; b = m_bvecvec[z][i]; dist = (l - kseedsl[n])*(l - kseedsl[n]) + (a - kseedsa[n])*(a - kseedsa[n]) + (b - kseedsb[n])*(b - kseedsb[n]); distxyz = (x - kseedsx[n])*(x - kseedsx[n]) + (y - kseedsy[n])*(y - kseedsy[n]) + (z - kseedsz[n])*(z - kseedsz[n]); //------------------------------------------------------------------------ dist += distxyz*invwt; //------------------------------------------------------------------------ if ( dist < distvec[z][i] ) { distvec[z][i] = dist; klabels[z][i] = n; } } } } } //----------------------------------------------------------------- // Recalculate the centroid and store in the seed values //----------------------------------------------------------------- //instead of reassigning memory on each iteration, just reset. sigmal.assign(numk, 0); sigmaa.assign(numk, 0); sigmab.assign(numk, 0); sigmax.assign(numk, 0); sigmay.assign(numk, 0); sigmaz.assign(numk, 0); clustersize.assign(numk, 0); for ( int d = 0; d < m_depth; d++ ) { int ind(0); for ( int r = 0; r < m_height; r++ ) { for ( int c = 0; c < m_width; c++ ) { sigmal[klabels[d][ind]] += m_lvecvec[d][ind]; sigmaa[klabels[d][ind]] += m_avecvec[d][ind]; sigmab[klabels[d][ind]] += m_bvecvec[d][ind]; sigmax[klabels[d][ind]] += c; sigmay[klabels[d][ind]] += r; sigmaz[klabels[d][ind]] += d; clustersize[klabels[d][ind]] += 1.0; ind++; } } } { for ( int k = 0; k < numk; k++ ) { if ( clustersize[k] <= 0 ) clustersize[k] = 1; inv[k] = 1.0/clustersize[k];//computing inverse now to multiply, than divide later } } { for ( int k = 0; k < numk; k++ ) { kseedsl[k] = sigmal[k]*inv[k]; kseedsa[k] = sigmaa[k]*inv[k]; kseedsb[k] = sigmab[k]*inv[k]; kseedsx[k] = sigmax[k]*inv[k]; kseedsy[k] = sigmay[k]*inv[k]; kseedsz[k] = sigmaz[k]*inv[k]; } } } } //=========================================================================== /// SaveSuperpixelLabels /// /// Save labels in raster scan order. //=========================================================================== void SLIC::SaveSuperpixelLabels( const int*& labels, const int& width, const int& height, const string& filename, const string& path) { #ifdef WINDOWS char fname[256]; char extn[256]; _splitpath(filename.c_str(), NULL, NULL, fname, extn); string temp = fname; string finalpath = path + temp + string(".dat"); #else string nameandextension = filename; size_t pos = filename.find_last_of("/"); if (pos != string::npos)//if a slash is found, then take the filename with extension { nameandextension = filename.substr(pos+1); } string newname = nameandextension.replace(nameandextension.rfind(".")+1, 3, "dat");//find the position of the dot and replace the 3 characters following it. string finalpath = path+newname; #endif int sz = width*height; ofstream outfile; outfile.open(finalpath.c_str(), ios::binary); for ( int i = 0; i < sz; i++ ) { outfile.write((const char*)&labels[i], sizeof(int)); } outfile.close(); } //=========================================================================== /// SaveSupervoxelLabels /// /// Save labels in raster scan order. //=========================================================================== void SLIC::SaveSupervoxelLabels( const int**& labels, const int& width, const int& height, const int& depth, const string& filename, const string& path) { #ifdef WINDOWS char fname[256]; char extn[256]; _splitpath(filename.c_str(), NULL, NULL, fname, extn); string temp = fname; string finalpath = path + temp + string(".dat"); #else string nameandextension = filename; size_t pos = filename.find_last_of("/"); if (pos != string::npos)//if a slash is found, then take the filename with extension { nameandextension = filename.substr(pos+1); } string newname = nameandextension.replace(nameandextension.rfind(".")+1, 3, "dat");//find the position of the dot and replace the 3 characters following it. string finalpath = path+newname; #endif int sz = width*height; ofstream outfile; outfile.open(finalpath.c_str(), ios::binary); for ( int d = 0; d < depth; d++ ) { for ( int i = 0; i < sz; i++ ) { outfile.write((const char*)&labels[d][i], sizeof(int)); } } outfile.close(); } //=========================================================================== /// EnforceLabelConnectivity /// /// 1. finding an adjacent label for each new component at the start /// 2. if a certain component is too small, assigning the previously found /// adjacent label to this component, and not incrementing the label. //=========================================================================== void SLIC::EnforceLabelConnectivity( const int* labels,//input labels that need to be corrected to remove stray labels const int width, const int height, int*& nlabels,//new labels int& numlabels,//the number of labels changes in the end if segments are removed const int& K) //the number of superpixels desired by the user { // const int dx8[8] = {-1, -1, 0, 1, 1, 1, 0, -1}; // const int dy8[8] = { 0, -1, -1, -1, 0, 1, 1, 1}; const int dx4[4] = {-1, 0, 1, 0}; const int dy4[4] = { 0, -1, 0, 1}; const int sz = width*height; const int SUPSZ = sz/K; //nlabels.resize(sz, -1); for ( int i = 0; i < sz; i++ ) nlabels[i] = -1; int label(0); int* xvec = new int[sz]; int* yvec = new int[sz]; int oindex(0); int adjlabel(0);//adjacent label for ( int j = 0; j < height; j++ ) { for ( int k = 0; k < width; k++ ) { if ( 0 > nlabels[oindex] ) { nlabels[oindex] = label; //-------------------- // Start a new segment //-------------------- xvec[0] = k; yvec[0] = j; //------------------------------------------------------- // Quickly find an adjacent label for use later if needed //------------------------------------------------------- { for ( int n = 0; n < 4; n++ ) { int x = xvec[0] + dx4[n]; int y = yvec[0] + dy4[n]; if ( (x >= 0 && x < width) && (y >= 0 && y < height) ) { int nindex = y*width + x; if (nlabels[nindex] >= 0) adjlabel = nlabels[nindex]; } } } int count(1); for ( int c = 0; c < count; c++ ) { for ( int n = 0; n < 4; n++ ) { int x = xvec[c] + dx4[n]; int y = yvec[c] + dy4[n]; if ( (x >= 0 && x < width) && (y >= 0 && y < height) ) { int nindex = y*width + x; if ( 0 > nlabels[nindex] && labels[oindex] == labels[nindex] ) { xvec[count] = x; yvec[count] = y; nlabels[nindex] = label; count++; } } } } //------------------------------------------------------- // If segment size is less then a limit, assign an // adjacent label found before, and decrement label count. //------------------------------------------------------- if (count <= SUPSZ >> 2) { for ( int c = 0; c < count; c++ ) { int ind = yvec[c]*width+xvec[c]; nlabels[ind] = adjlabel; } label--; } label++; } oindex++; } } numlabels = label; if (xvec) delete [] xvec; if (yvec) delete [] yvec; } //=========================================================================== /// RelabelStraySupervoxels //=========================================================================== void SLIC::EnforceSupervoxelLabelConnectivity( int**& labels,//input - previous labels, output - new labels const int& width, const int& height, const int& depth, int& numlabels, const int& STEP) { const int dx10[10] = {-1, 0, 1, 0, -1, 1, 1, -1, 0, 0}; const int dy10[10] = { 0, -1, 0, 1, -1, -1, 1, 1, 0, 0}; const int dz10[10] = { 0, 0, 0, 0, 0, 0, 0, 0, -1, 1}; int sz = width*height; const int SUPSZ = STEP*STEP*STEP; int adjlabel(0);//adjacent label int* xvec = new int[SUPSZ*10];//a large enough size int* yvec = new int[SUPSZ*10];//a large enough size int* zvec = new int[SUPSZ*10];//a large enough size //------------------ // memory allocation //------------------ int** nlabels = new int*[depth]; { for ( int d = 0; d < depth; d++ ) { nlabels[d] = new int[sz]; for ( int i = 0; i < sz; i++ ) nlabels[d][i] = -1; } } //------------------ // labeling //------------------ int lab(0); { for ( int d = 0; d < depth; d++ ) { int i(0); for ( int h = 0; h < height; h++ ) { for ( int w = 0; w < width; w++ ) { if (nlabels[d][i] < 0) { nlabels[d][i] = lab; //------------------------------------------------------- // Quickly find an adjacent label for use later if needed //------------------------------------------------------- { for ( int n = 0; n < 10; n++ ) { int x = w + dx10[n]; int y = h + dy10[n]; int z = d + dz10[n]; if ( (x >= 0 && x < width) && (y >= 0 && y < height) && (z >= 0 && z < depth) ) { int nindex = y*width + x; if (nlabels[z][nindex] >= 0) { adjlabel = nlabels[z][nindex]; } } } } xvec[0] = w; yvec[0] = h; zvec[0] = d; int count(1); for ( int c = 0; c < count; c++ ) { for ( int n = 0; n < 10; n++ ) { int x = xvec[c] + dx10[n]; int y = yvec[c] + dy10[n]; int z = zvec[c] + dz10[n]; if ( (x >= 0 && x < width) && (y >= 0 && y < height) && (z >= 0 && z < depth)) { int nindex = y*width + x; if ( 0 > nlabels[z][nindex] && labels[d][i] == labels[z][nindex] ) { xvec[count] = x; yvec[count] = y; zvec[count] = z; nlabels[z][nindex] = lab; count++; } } } } //------------------------------------------------------- // If segment size is less then a limit, assign an // adjacent label found before, and decrement label count. //------------------------------------------------------- if (count <= (SUPSZ >> 2))//this threshold can be changed according to needs { for ( int c = 0; c < count; c++ ) { int ind = yvec[c]*width+xvec[c]; nlabels[zvec[c]][ind] = adjlabel; } lab--; } //-------------------------------------------------------- lab++; } i++; } } } } //------------------ // mem de-allocation //------------------ { for ( int d = 0; d < depth; d++ ) { for ( int i = 0; i < sz; i++ ) labels[d][i] = nlabels[d][i]; } } { for ( int d = 0; d < depth; d++ ) { delete [] nlabels[d]; } } delete [] nlabels; //------------------ if (xvec) delete [] xvec; if (yvec) delete [] yvec; if (zvec) delete [] zvec; //------------------ numlabels = lab; //------------------ } //=========================================================================== /// DoSuperpixelSegmentation_ForGivenSuperpixelSize /// /// The input parameter ubuff conains RGB values in a 32-bit unsigned integers /// as follows: /// /// [1 1 1 1 1 1 1 1] [1 1 1 1 1 1 1 1] [1 1 1 1 1 1 1 1] [1 1 1 1 1 1 1 1] /// /// Nothing R G B /// /// The RGB values are accessed from (and packed into) the unsigned integers /// using bitwise operators as can be seen in the function DoRGBtoLABConversion(). /// /// compactness value depends on the input pixels values. For instance, if /// the input is greyscale with values ranging from 0-100, then a compactness /// value of 20.0 would give good results. A greater value will make the /// superpixels more compact while a smaller value would make them more uneven. /// /// The labels can be saved if needed using SaveSuperpixelLabels() //=========================================================================== void SLIC::DoSuperpixelSegmentation_ForGivenSuperpixelSize( const unsigned int* ubuff, const int width, const int height, int*& klabels, int& numlabels, const int& superpixelsize, const double& compactness, bool lab) { //------------------------------------------------ const int STEP = sqrt(double(superpixelsize))+0.5; //------------------------------------------------ vector kseedsl(0); vector kseedsa(0); vector kseedsb(0); vector kseedsx(0); vector kseedsy(0); //-------------------------------------------------- m_width = width; m_height = height; int sz = m_width*m_height; //klabels.resize( sz, -1 ); //-------------------------------------------------- klabels = new int[sz]; for ( int s = 0; s < sz; s++ ) klabels[s] = -1; //-------------------------------------------------- if (lab)//LAB, the default option { DoRGBtoLABConversion(ubuff, m_lvec, m_avec, m_bvec); } else//RGB { m_lvec = new double[sz]; m_avec = new double[sz]; m_bvec = new double[sz]; for ( int i = 0; i < sz; i++ ) { m_lvec[i] = ubuff[i] >> 16 & 0xff; m_avec[i] = ubuff[i] >> 8 & 0xff; m_bvec[i] = ubuff[i] & 0xff; } } //-------------------------------------------------- bool perturbseeds(false);//perturb seeds is not absolutely necessary, one can set this flag to false vector edgemag(0); if (perturbseeds) DetectLabEdges(m_lvec, m_avec, m_bvec, m_width, m_height, edgemag); GetLABXYSeeds_ForGivenStepSize(kseedsl, kseedsa, kseedsb, kseedsx, kseedsy, STEP, perturbseeds, edgemag); PerformSuperpixelSLIC(kseedsl, kseedsa, kseedsb, kseedsx, kseedsy, klabels, STEP, edgemag,compactness); numlabels = kseedsl.size(); int* nlabels = new int[sz]; EnforceLabelConnectivity(klabels, m_width, m_height, nlabels, numlabels, double(sz)/double(STEP*STEP)); { for (int i = 0; i < sz; i++ ) klabels[i] = nlabels[i]; } if (nlabels) delete [] nlabels; } //=========================================================================== /// DoSuperpixelSegmentation_ForGivenNumberOfSuperpixels /// /// The input parameter ubuff conains RGB values in a 32-bit unsigned integers /// as follows: /// /// [1 1 1 1 1 1 1 1] [1 1 1 1 1 1 1 1] [1 1 1 1 1 1 1 1] [1 1 1 1 1 1 1 1] /// /// Nothing R G B /// /// The RGB values are accessed from (and packed into) the unsigned integers /// using bitwise operators as can be seen in the function DoRGBtoLABConversion(). /// /// compactness value depends on the input pixels values. For instance, if /// the input is greyscale with values ranging from 0-100, then a compactness /// value of 20.0 would give good results. A greater value will make the /// superpixels more compact while a smaller value would make them more uneven. /// /// The labels can be saved if needed using SaveSuperpixelLabels() //=========================================================================== void SLIC::DoSuperpixelSegmentation_ForGivenNumberOfSuperpixels( const unsigned int* ubuff, const int width, const int height, int*& klabels, int& numlabels, const int& K,//required number of superpixels const double& compactness, bool lab)//weight given to spatial distance { const int superpixelsize = 0.5+double(width*height)/double(K); DoSuperpixelSegmentation_ForGivenSuperpixelSize(ubuff,width,height,klabels,numlabels,superpixelsize,compactness, lab); } //=========================================================================== /// DoSupervoxelSegmentation /// /// There is option to save the labels if needed. /// /// The input parameter ubuffvec holds all the video frames. It is a /// 2-dimensional array. The first dimension is depth and the second dimension /// is pixel location in a frame. For example, to access a pixel in the 3rd /// frame (i.e. depth index 2), in the 4th row (i.e. height index 3) on the /// 37th column (i.e. width index 36), you would write: /// /// unsigned int the_pixel_i_want = ubuffvec[2][3*width + 36] /// /// In addition, here is how the RGB values are contained in a 32-bit unsigned /// integer: /// /// [1 1 1 1 1 1 1 1] [1 1 1 1 1 1 1 1] [1 1 1 1 1 1 1 1] [1 1 1 1 1 1 1 1] /// /// Nothing R G B /// /// The RGB values are accessed from (and packed into) the unsigned integers /// using bitwise operators as can be seen in the function DoRGBtoLABConversion(). /// /// compactness value depends on the input pixels values. For instance, if /// the input is greyscale with values ranging from 0-100, then a compactness /// value of 20.0 would give good results. A greater value will make the /// supervoxels more compact while a smaller value would make them more uneven. //=========================================================================== void SLIC::DoSupervoxelSegmentation( unsigned int**& ubuffvec, const int& width, const int& height, const int& depth, int**& klabels, int& numlabels, const int& supervoxelsize, const double& compactness) { //--------------------------------------------------------- const int STEP = 0.5 + pow(double(supervoxelsize),1.0/3.0); //--------------------------------------------------------- vector kseedsl(0); vector kseedsa(0); vector kseedsb(0); vector kseedsx(0); vector kseedsy(0); vector kseedsz(0); //-------------------------------------------------- m_width = width; m_height = height; m_depth = depth; int sz = m_width*m_height; //-------------------------------------------------- //klabels = new int*[depth]; m_lvecvec = new double*[depth]; m_avecvec = new double*[depth]; m_bvecvec = new double*[depth]; for ( int d = 0; d < depth; d++ ) { //klabels[d] = new int[sz]; m_lvecvec[d] = new double[sz]; m_avecvec[d] = new double[sz]; m_bvecvec[d] = new double[sz]; for ( int s = 0; s < sz; s++ ) { klabels[d][s] = -1; } } DoRGBtoLABConversion(ubuffvec, m_lvecvec, m_avecvec, m_bvecvec); GetKValues_LABXYZ(kseedsl, kseedsa, kseedsb, kseedsx, kseedsy, kseedsz, STEP); PerformSupervoxelSLIC(kseedsl, kseedsa, kseedsb, kseedsx, kseedsy, kseedsz, klabels, STEP, compactness); EnforceSupervoxelLabelConnectivity(klabels, width, height, depth, numlabels, STEP); }