Sven Sickert a9c5c11eb0 fixed 'multiple defintions' in felzenszwalb segmentation %!s(int64=8) %!d(string=hai) anos
..
COPYING 2fd42714e0 initialization %!s(int64=12) %!d(string=hai) anos
Makefile 2fd42714e0 initialization %!s(int64=12) %!d(string=hai) anos
README 2fd42714e0 initialization %!s(int64=12) %!d(string=hai) anos
convolve.h 2fd42714e0 initialization %!s(int64=12) %!d(string=hai) anos
disjoint-set.cpp a9c5c11eb0 fixed 'multiple defintions' in felzenszwalb segmentation %!s(int64=8) %!d(string=hai) anos
disjoint-set.h a9c5c11eb0 fixed 'multiple defintions' in felzenszwalb segmentation %!s(int64=8) %!d(string=hai) anos
filter.h a9c5c11eb0 fixed 'multiple defintions' in felzenszwalb segmentation %!s(int64=8) %!d(string=hai) anos
image.h 2fd42714e0 initialization %!s(int64=12) %!d(string=hai) anos
imconv.h 2fd42714e0 initialization %!s(int64=12) %!d(string=hai) anos
imutil.h 2fd42714e0 initialization %!s(int64=12) %!d(string=hai) anos
misc.h 2fd42714e0 initialization %!s(int64=12) %!d(string=hai) anos
pnmfile.h 2fd42714e0 initialization %!s(int64=12) %!d(string=hai) anos
segment-graph.h a9c5c11eb0 fixed 'multiple defintions' in felzenszwalb segmentation %!s(int64=8) %!d(string=hai) anos
segment-image.h a9c5c11eb0 fixed 'multiple defintions' in felzenszwalb segmentation %!s(int64=8) %!d(string=hai) anos
segment.cpp 8137977a2f fixed namespace usage %!s(int64=11) %!d(string=hai) anos

README


Implementation of the segmentation algorithm described in:

Efficient Graph-Based Image Segmentation
Pedro F. Felzenszwalb and Daniel P. Huttenlocher
International Journal of Computer Vision, 59(2) September 2004.

The program takes a color image (PPM format) and produces a segmentation
with a random color assigned to each region.

1) Type "make" to compile "segment".

2) Run "segment sigma k min input output".

The parameters are: (see the paper for details)

sigma: Used to smooth the input image before segmenting it.
k: Value for the threshold function.
min: Minimum component size enforced by post-processing.
input: Input image.
output: Output image.

Typical parameters are sigma = 0.5, k = 500, min = 20.
Larger values for k result in larger components in the result.