|
@@ -0,0 +1,2368 @@
|
|
|
+#include <sstream>
|
|
|
+#include <iostream>
|
|
|
+
|
|
|
+#include "SemSegCsurka.h"
|
|
|
+#include "vislearning/baselib/ICETools.h"
|
|
|
+#include "core/image/Filter.h"
|
|
|
+#include "semseg/semseg/postsegmentation/PSSImageLevelPrior.h"
|
|
|
+
|
|
|
+using namespace std;
|
|
|
+using namespace NICE;
|
|
|
+using namespace OBJREC;
|
|
|
+
|
|
|
+#undef DEBUG_CSURK
|
|
|
+
|
|
|
+#undef UNCERTAINTY
|
|
|
+// #define UNCERTAINTY
|
|
|
+
|
|
|
+SemSegCsurka::SemSegCsurka ( const Config *conf,
|
|
|
+ const MultiDataset *md )
|
|
|
+ : SemanticSegmentation ( conf, & ( md->getClassNames ( "train" ) ) )
|
|
|
+{
|
|
|
+ this->conf = conf;
|
|
|
+
|
|
|
+ opSiftImpl = conf->gS ( "Descriptor", "implementation", "VANDESANDE" );
|
|
|
+ readfeat = conf->gB ( "Descriptor", "read", true );
|
|
|
+ writefeat = conf->gB ( "Descriptor", "write", true );
|
|
|
+#ifdef DEBUG_CSURK
|
|
|
+ clog << "[log] SemSegCsurka::SemSegCsurka: OppenentSift implemenation: " << opSiftImpl << endl;
|
|
|
+#endif
|
|
|
+
|
|
|
+ save_cache = conf->gB ( "FPCPixel", "save_cache", true );
|
|
|
+ read_cache = conf->gB ( "FPCPixel", "read_cache", false );
|
|
|
+ cache = conf->gS ( "cache", "root", "" );
|
|
|
+ sigmaweight = conf->gD ( "SemSegCsurka", "sigmaweight", 0.6 );
|
|
|
+
|
|
|
+ dim = conf->gI ( "SemSegCsurka", "pcadim", 50 );
|
|
|
+
|
|
|
+ usepca = conf->gB ( "SemSegCsurka", "usepca", true );
|
|
|
+ calcpca = conf->gB ( "SemSegCsurka", "calcpca", false );
|
|
|
+
|
|
|
+ usegmm = conf->gB ( "SemSegCsurka", "usegmm", false );
|
|
|
+ norm = conf->gB ( "SemSegCsurka", "normalize", false );
|
|
|
+ usefisher = conf->gB ( "SemSegCsurka", "usefisher", false );
|
|
|
+ dogmm = conf->gB ( "SemSegCsurka", "dogmm", false );
|
|
|
+ gaussians = conf->gI ( "SemSegCsurka", "gaussians", 50 );
|
|
|
+
|
|
|
+ usekmeans = conf->gB ( "SemSegCsurka", "usekmeans", false );
|
|
|
+ kmeansfeat = conf->gI ( "SemSegCsurka", "kmeansfeat", 50 );
|
|
|
+ kmeanshard = conf->gB ( "SemSegCsurka", "kmeanshard", false );
|
|
|
+
|
|
|
+ cname = conf->gS ( "SemSegCsurka", "classifier", "RandomForests" );
|
|
|
+ anteil = conf->gD ( "SemSegCsurka", "anteil", 1.0 );
|
|
|
+ userellocprior = conf->gB ( "SemSegCsurka", "rellocfeat", false );
|
|
|
+ bool usesrg = conf->gB ( "SemSegCsurka", "usesrg", false );
|
|
|
+
|
|
|
+ useregions = conf->gB ( "SemSegCsurka", "useregions", true );
|
|
|
+ savesteps = conf->gB ( "SemSegCsurka", "savesteps", true );
|
|
|
+ bool usegcopt = conf->gB ( "SemSegCsurka", "usegcopt", false );
|
|
|
+
|
|
|
+ bestclasses = conf->gI ( "SemSegCsurka", "bestclasses", 0 );
|
|
|
+
|
|
|
+ smoothhl = conf->gB ( "SemSegCsurka", "smoothhl", false );
|
|
|
+ smoothfactor = conf->gD ( "SemSegCsurka", "smoothfactor", 1.0 );
|
|
|
+
|
|
|
+ usecolorfeats = conf->gB ( "SemSegCsurka", "usecolorfeats", false );
|
|
|
+
|
|
|
+ string rsMethod = conf->gS ( "SemSegCsurka", "segmentation", "meanshift" );
|
|
|
+
|
|
|
+ g = NULL;
|
|
|
+ k = NULL;
|
|
|
+ relloc = NULL;
|
|
|
+ srg = NULL;
|
|
|
+ gcopt = NULL;
|
|
|
+
|
|
|
+ if ( !useregions && ( userellocprior || usesrg ) )
|
|
|
+ {
|
|
|
+ cerr << "relative location priors and super region growing are just supported in combination with useregions" << endl;
|
|
|
+ exit ( 1 );
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( usepca )
|
|
|
+ pca = PCA ( dim );
|
|
|
+
|
|
|
+ RegionSegmentationMethod * tmpseg;
|
|
|
+ if ( rsMethod == "meanshift" )
|
|
|
+ tmpseg = new RSMeanShift ( conf );
|
|
|
+ else
|
|
|
+ tmpseg = new RSGraphBased ( conf );
|
|
|
+
|
|
|
+ if ( save_cache )
|
|
|
+ seg = new RSCache ( conf, tmpseg );
|
|
|
+ else
|
|
|
+ seg = tmpseg;
|
|
|
+
|
|
|
+ if ( userellocprior )
|
|
|
+ relloc = new RelativeLocationPrior ( conf );
|
|
|
+ else
|
|
|
+ relloc = NULL;
|
|
|
+
|
|
|
+#ifdef NICE_USELIB_ICE
|
|
|
+ if ( usesrg )
|
|
|
+ srg = new PPSuperregion ( conf );
|
|
|
+ else
|
|
|
+ srg = NULL;
|
|
|
+#else
|
|
|
+ srg = NULL;
|
|
|
+#endif
|
|
|
+
|
|
|
+ if ( usegcopt )
|
|
|
+ gcopt = new PPGraphCut ( conf );
|
|
|
+ else
|
|
|
+ gcopt = NULL;
|
|
|
+
|
|
|
+ classifier = NULL;
|
|
|
+ vclassifier = NULL;
|
|
|
+ if ( cname == "RandomForests" )
|
|
|
+ classifier = new FPCRandomForests ( conf, "ClassifierForest" );
|
|
|
+ else if ( cname == "SMLR" )
|
|
|
+ classifier = new FPCSMLR ( conf, "ClassifierSMLR" );
|
|
|
+ else if ( cname == "GPHIK" )
|
|
|
+ classifier = new GPHIKClassifierNICE ( conf, "ClassiferGPHIK" );
|
|
|
+ else
|
|
|
+ vclassifier = GenericClassifierSelection::selectVecClassifier ( conf, "main" );
|
|
|
+ //classifier = new FPCSparseMultinomialLogisticRegression(conf, "ClassifierSMLR");
|
|
|
+
|
|
|
+ if ( classifier != NULL )
|
|
|
+ classifier->setMaxClassNo ( classNames->getMaxClassno() );
|
|
|
+ else
|
|
|
+ vclassifier->setMaxClassNo ( classNames->getMaxClassno() );
|
|
|
+
|
|
|
+ cn = md->getClassNames ( "train" );
|
|
|
+
|
|
|
+ if ( read_cache )
|
|
|
+ {
|
|
|
+ fprintf ( stderr, "SemSegCsurka:: Reading classifier data from %s\n", ( cache + "/fpcrf.data" ).c_str() );
|
|
|
+
|
|
|
+ if ( classifier != NULL )
|
|
|
+ classifier->read ( cache + "/fpcrf.data" );
|
|
|
+ else
|
|
|
+ vclassifier->read ( cache + "/veccl.data" );
|
|
|
+
|
|
|
+ if ( usepca )
|
|
|
+ {
|
|
|
+ std::string filename = cache + "/pca";
|
|
|
+ pca.read ( filename );
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( usegmm )
|
|
|
+ {
|
|
|
+ g = new GMM ( conf, gaussians );
|
|
|
+
|
|
|
+ if ( !g->loadData ( cache + "/gmm" ) )
|
|
|
+ {
|
|
|
+ cerr << "SemSegCsurka:: no gmm file found" << endl;
|
|
|
+ exit ( -1 );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else {
|
|
|
+ g = NULL;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( usekmeans )
|
|
|
+ {
|
|
|
+ k = new KMeansOnline ( gaussians );
|
|
|
+ }
|
|
|
+
|
|
|
+ fprintf ( stderr, "SemSegCsurka:: successfully read\n" );
|
|
|
+
|
|
|
+ std::string filename = cache + "/rlp";
|
|
|
+
|
|
|
+ FILE *value;
|
|
|
+ value = fopen ( filename.c_str(), "r" );
|
|
|
+
|
|
|
+ if ( value == NULL )
|
|
|
+ {
|
|
|
+ trainpostprocess ( md );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ if ( userellocprior )
|
|
|
+ {
|
|
|
+ relloc->read ( filename );
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ filename = cache + "/srg";
|
|
|
+
|
|
|
+ value = fopen ( filename.c_str(), "r" );
|
|
|
+
|
|
|
+ if ( value == NULL )
|
|
|
+ {
|
|
|
+ trainpostprocess ( md );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ if ( srg != NULL )
|
|
|
+ {
|
|
|
+ srg->read ( filename );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ train ( md );
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+SemSegCsurka::~SemSegCsurka()
|
|
|
+{
|
|
|
+ // clean-up
|
|
|
+ if ( classifier != NULL )
|
|
|
+ delete classifier;
|
|
|
+ if ( vclassifier != NULL )
|
|
|
+ delete vclassifier;
|
|
|
+ if ( seg != NULL )
|
|
|
+ delete seg;
|
|
|
+
|
|
|
+ g = NULL;
|
|
|
+ if ( g != NULL )
|
|
|
+ delete g;
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::normalize ( Examples &ex )
|
|
|
+{
|
|
|
+ assert ( ex.size() > 0 );
|
|
|
+ if ( vecmin.size() == 0 )
|
|
|
+ {
|
|
|
+ for ( int j = 0; j < ( int ) ex[0].second.vec->size(); j++ )
|
|
|
+ {
|
|
|
+ double maxv = -numeric_limits<int>::max();
|
|
|
+ double minv = numeric_limits<int>::max();
|
|
|
+ for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
+ {
|
|
|
+ maxv = std::max ( maxv, ( *ex[i].second.vec ) [j] );
|
|
|
+ minv = std::min ( minv, ( *ex[i].second.vec ) [j] );
|
|
|
+ }
|
|
|
+ vecmin.push_back ( minv );
|
|
|
+ vecmax.push_back ( maxv );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
+ {
|
|
|
+ for ( int j = 0; j < ( int ) ex[i].second.vec->size(); j++ )
|
|
|
+ {
|
|
|
+ ( *ex[i].second.vec ) [j] = ( ( *ex[i].second.vec ) [j] - vecmin[j] ) / ( vecmax[j] - vecmin[j] );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::convertLowToHigh ( Examples &ex, double reduce )
|
|
|
+{
|
|
|
+ cout << "converting low-level features to high-level features" << endl;
|
|
|
+
|
|
|
+ if ( reduce >= 1.0 )
|
|
|
+ {
|
|
|
+ for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
+ {
|
|
|
+ SparseVector *f = new SparseVector();
|
|
|
+
|
|
|
+ if ( usekmeans )
|
|
|
+ {
|
|
|
+ k->getDist ( *ex[i].second.vec, *f, kmeansfeat, kmeanshard );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ if ( usefisher )
|
|
|
+ g->getFisher ( *ex[i].second.vec, *f );
|
|
|
+ else
|
|
|
+ g->getProbs ( *ex[i].second.vec, *f );
|
|
|
+ }
|
|
|
+ delete ex[i].second.vec;
|
|
|
+
|
|
|
+ ex[i].second.vec = NULL;
|
|
|
+ ex[i].second.svec = f;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ srand ( time ( NULL ) );
|
|
|
+
|
|
|
+ vector<bool> del ( ex.size(), false );
|
|
|
+ cout << "Example size old " << ex.size() << endl;
|
|
|
+
|
|
|
+//#pragma omp parallel for
|
|
|
+ for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
+ {
|
|
|
+ double rval = ( double ) rand() / ( double ) RAND_MAX;
|
|
|
+ if ( rval < reduce )
|
|
|
+ {
|
|
|
+ SparseVector *f = new SparseVector();
|
|
|
+
|
|
|
+ if ( usekmeans )
|
|
|
+ k->getDist ( *ex[i].second.vec, *f, kmeansfeat, kmeanshard );
|
|
|
+ else
|
|
|
+ {
|
|
|
+ if ( usefisher )
|
|
|
+ g->getFisher ( *ex[i].second.vec, *f );
|
|
|
+ else
|
|
|
+ g->getProbs ( *ex[i].second.vec, *f );
|
|
|
+ }
|
|
|
+
|
|
|
+ delete ex[i].second.vec;
|
|
|
+ ex[i].second.vec = NULL;
|
|
|
+ ex[i].second.svec = f;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ del[i] = true;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ for ( int i = ( int ) del.size() - 1; i >= 0; i-- )
|
|
|
+ {
|
|
|
+ if ( del[i] )
|
|
|
+ {
|
|
|
+ ex.erase ( ex.begin() + i );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ cerr << "Example size new " << ex.size() << endl;
|
|
|
+ }
|
|
|
+ cerr << "converting low-level features to high-level features finished" << endl;
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::smoothHL ( Examples ex )
|
|
|
+{
|
|
|
+
|
|
|
+ if ( !smoothhl )
|
|
|
+ return;
|
|
|
+ assert ( ex.size() > 1 );
|
|
|
+
|
|
|
+ long long int minx = numeric_limits<long long int>::max();
|
|
|
+ long long int miny = numeric_limits<long long int>::max();
|
|
|
+ long long int maxx = -numeric_limits<long long int>::max();
|
|
|
+ long long int maxy = -numeric_limits<long long int>::max();
|
|
|
+ long long int distx = numeric_limits<long long int>::max();
|
|
|
+ long long int disty = numeric_limits<long long int>::max();
|
|
|
+
|
|
|
+ set<double> scales;
|
|
|
+ for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
+ {
|
|
|
+ scales.insert ( ex[i].second.scale );
|
|
|
+ }
|
|
|
+
|
|
|
+ map<double, int> scalepos;
|
|
|
+ int it = 0;
|
|
|
+
|
|
|
+ for ( set<double>::const_iterator iter = scales.begin(); iter != scales.end(); ++iter, ++it )
|
|
|
+ {
|
|
|
+ scalepos.insert ( make_pair ( *iter, it ) );
|
|
|
+ }
|
|
|
+
|
|
|
+ for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
+ {
|
|
|
+ if ( minx < numeric_limits<int>::max() && ex[i].second.x - minx > 0 )
|
|
|
+ distx = std::min ( distx, ex[i].second.x - minx );
|
|
|
+ if ( miny < numeric_limits<int>::max() && ex[i].second.y - miny > 0 )
|
|
|
+ disty = std::min ( disty, ex[i].second.y - miny );
|
|
|
+ minx = std::min ( ( long long int ) ex[i].second.x, minx );
|
|
|
+ maxx = std::max ( ( long long int ) ex[i].second.x, maxx );
|
|
|
+ miny = std::min ( ( long long int ) ex[i].second.y, miny );
|
|
|
+ maxy = std::max ( ( long long int ) ex[i].second.y, maxy );
|
|
|
+ }
|
|
|
+
|
|
|
+ distx = abs ( distx );
|
|
|
+
|
|
|
+ int xsize = ( maxx - minx ) / distx + 1;
|
|
|
+ int ysize = ( maxy - miny ) / disty + 1;
|
|
|
+ double valx = ( ( double ) xsize - 1 ) / ( double ) ( maxx - minx );
|
|
|
+ double valy = ( ( double ) ysize - 1 ) / ( double ) ( maxy - miny );
|
|
|
+
|
|
|
+ //double sigma = smoothfactor;
|
|
|
+ double sigma = std::max ( xsize, ysize ) * smoothfactor;
|
|
|
+ //double sigma = 0.2;
|
|
|
+ cout << "sigma1: " << sigma << endl;
|
|
|
+
|
|
|
+ vector<NICE::FloatImage> imgv;
|
|
|
+ vector<NICE::FloatImage> gaussImgv;
|
|
|
+ for ( int i = 0; i < ( int ) scalepos.size(); i++ )
|
|
|
+ {
|
|
|
+ NICE::FloatImage img ( xsize, ysize );
|
|
|
+ NICE::FloatImage gaussImg ( xsize, ysize );
|
|
|
+ imgv.push_back ( img );
|
|
|
+ gaussImgv.push_back ( gaussImg );
|
|
|
+ }
|
|
|
+
|
|
|
+ for ( int d = 0; d < ex[0].second.svec->getDim(); d++ )
|
|
|
+ {
|
|
|
+ //TODO: max und min dynamisches bestimmen
|
|
|
+
|
|
|
+ for ( int i = 0; i < ( int ) scalepos.size(); i++ )
|
|
|
+ {
|
|
|
+ imgv[i].set ( 0.0 );
|
|
|
+ gaussImgv[i].set ( 0.0 );
|
|
|
+ }
|
|
|
+
|
|
|
+ for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
+ {
|
|
|
+ int xpos = ( ex[i].second.x - minx ) * valx;
|
|
|
+ int ypos = ( ex[i].second.y - miny ) * valy;
|
|
|
+
|
|
|
+ double val = ex[i].second.svec->get ( d );
|
|
|
+ imgv[scalepos[ex[i].second.scale]].setPixel ( xpos, ypos, val );
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ for(int y = 0; y < ysize; y++)
|
|
|
+ {
|
|
|
+ for(int x = 0; x < xsize; x++)
|
|
|
+ {
|
|
|
+ // refactor-nice.pl: check this substitution
|
|
|
+ // old: double val = GetValD(img,x,y);
|
|
|
+ double val = img.getPixel(x,y);
|
|
|
+ double c = 0.0;
|
|
|
+ if(val == 0.0)
|
|
|
+ {
|
|
|
+ if(x > 0)
|
|
|
+ {
|
|
|
+ // refactor-nice.pl: check this substitution
|
|
|
+ // old: val+=GetValD(img,x-1,y);
|
|
|
+ val+=img.getPixel(x-1,y);
|
|
|
+ c+=1.0;
|
|
|
+ }
|
|
|
+ if(y > 0)
|
|
|
+ {
|
|
|
+ // refactor-nice.pl: check this substitution
|
|
|
+ // old: val+=GetValD(img,x,y-1);
|
|
|
+ val+=img.getPixel(x,y-1);
|
|
|
+ c+=1.0;
|
|
|
+ }
|
|
|
+ if(x < xsize-1)
|
|
|
+ {
|
|
|
+ // refactor-nice.pl: check this substitution
|
|
|
+ // old: val+=GetValD(img,x+1,y);
|
|
|
+ val+=img.getPixel(x+1,y);
|
|
|
+ c+=1.0;
|
|
|
+ }
|
|
|
+ if(y < ysize-1)
|
|
|
+ {
|
|
|
+ // refactor-nice.pl: check this substitution
|
|
|
+ // old: val+=GetValD(img,x,y+1);
|
|
|
+ val+=img.getPixel(x,y+1);
|
|
|
+ c+=1.0;
|
|
|
+ }
|
|
|
+ // refactor-nice.pl: check this substitution
|
|
|
+ // old: PutValD(img,x,y,val/c);
|
|
|
+ img.setPixel(x,y,val/c);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }*/
|
|
|
+
|
|
|
+ for ( int i = 0; i < ( int ) imgv.size(); i++ )
|
|
|
+ filterGaussSigmaApproximate<float, float, float> ( imgv[i], sigma, &gaussImgv[i] );
|
|
|
+
|
|
|
+ for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
+ {
|
|
|
+ int xpos = ( ex[i].second.x - minx ) * valx;
|
|
|
+ int ypos = ( ex[i].second.y - miny ) * valy;
|
|
|
+ // refactor-nice.pl: check this substitution
|
|
|
+ // old: double val = GetValD ( gaussImgv[scalepos[ex[i].second.scale]], xpos, ypos );
|
|
|
+ double val = gaussImgv[scalepos[ex[i].second.scale]].getPixel ( xpos, ypos );
|
|
|
+
|
|
|
+ if ( fabs ( val ) < 1e-7 )
|
|
|
+ {
|
|
|
+ if ( ex[i].second.svec->get ( d ) != 0.0 )
|
|
|
+ {
|
|
|
+ ex[i].second.svec->erase ( d );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ ( *ex[i].second.svec ) [d] = val;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::initializePCA ( Examples &ex )
|
|
|
+{
|
|
|
+#ifdef DEBUG
|
|
|
+ cerr << "start computing pca" << endl;
|
|
|
+#endif
|
|
|
+ std::string filename = cache + "/pca";
|
|
|
+ FILE *value;
|
|
|
+ value = fopen ( filename.c_str(), "r" );
|
|
|
+
|
|
|
+ if ( value == NULL || calcpca )
|
|
|
+ {
|
|
|
+ srand ( time ( NULL ) );
|
|
|
+
|
|
|
+ int featsize = ( int ) ex.size();
|
|
|
+ int maxfeatures = dim * 10;
|
|
|
+ int olddim = ex[0].second.vec->size();
|
|
|
+
|
|
|
+ maxfeatures = std::min ( maxfeatures, featsize );
|
|
|
+
|
|
|
+ NICE::Matrix features ( maxfeatures, olddim );
|
|
|
+
|
|
|
+ for ( int i = 0; i < maxfeatures; i++ )
|
|
|
+ {
|
|
|
+ int k = rand() % featsize;
|
|
|
+
|
|
|
+ int vsize = ( int ) ex[k].second.vec->size();
|
|
|
+ for ( int j = 0; j < vsize; j++ )
|
|
|
+ {
|
|
|
+ features ( i, j ) = ( * ( ex[k].second.vec ) ) [j];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ pca.calculateBasis ( features, dim );
|
|
|
+
|
|
|
+ if ( save_cache )
|
|
|
+ pca.save ( filename );
|
|
|
+
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ cout << "readpca: " << filename << endl;
|
|
|
+ pca.read ( filename );
|
|
|
+ cout << "end" << endl;
|
|
|
+ }
|
|
|
+#ifdef DEBUG
|
|
|
+ cerr << "finished computing pca" << endl;
|
|
|
+#endif
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::doPCA ( Examples &ex )
|
|
|
+{
|
|
|
+ cout << "converting features using pca starts" << endl;
|
|
|
+
|
|
|
+ std::string savedir = cname = conf->gS ( "cache", "root", "/dev/null/" );
|
|
|
+ std::string shortf = ex.filename;
|
|
|
+ if ( string::npos != ex.filename.rfind ( "/" ) )
|
|
|
+ shortf = ex.filename.substr ( ex.filename.rfind ( "/" ) );
|
|
|
+ std::string filename = savedir + "/pcasave/" + shortf;
|
|
|
+ std::string syscall = "mkdir " + savedir + "/pcasave";
|
|
|
+ system ( syscall.c_str() );
|
|
|
+ cout << "filename: " << filename << endl;
|
|
|
+
|
|
|
+ if ( !FileMgt::fileExists ( filename ) || calcpca )
|
|
|
+ {
|
|
|
+ ofstream ofStream;
|
|
|
+
|
|
|
+ //Opens the file binary
|
|
|
+ ofStream.open ( filename.c_str(), fstream::out | fstream::binary );
|
|
|
+
|
|
|
+ for ( int k = 0; k < ( int ) ex.size(); k++ )
|
|
|
+ {
|
|
|
+ NICE::Vector tmp = pca.getFeatureVector ( * ( ex[k].second.vec ), true );
|
|
|
+ delete ex[k].second.vec;
|
|
|
+ for ( int d = 0; d < ( int ) tmp.size(); d++ )
|
|
|
+ ofStream.write ( ( char* ) &tmp[d], sizeof ( double ) );
|
|
|
+ ex[k].second.vec = new NICE::Vector ( tmp );
|
|
|
+ }
|
|
|
+ ofStream.close();
|
|
|
+ cout << endl;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ ifstream ifStream;
|
|
|
+ ifStream.open ( filename.c_str(), std::fstream::in | std::fstream::binary );
|
|
|
+ for ( int k = 0; k < ( int ) ex.size(); k++ )
|
|
|
+ {
|
|
|
+ NICE::Vector tmp = NICE::Vector ( dim );
|
|
|
+ delete ex[k].second.vec;
|
|
|
+ for ( int d = 0; d < dim; d++ )
|
|
|
+ ifStream.read ( ( char* ) &tmp[d], sizeof ( double ) );
|
|
|
+ ex[k].second.vec = new NICE::Vector ( tmp );
|
|
|
+ }
|
|
|
+
|
|
|
+ ifStream.close();
|
|
|
+ }
|
|
|
+ cout << "converting features using pca finished" << endl;
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::train ( const MultiDataset *md )
|
|
|
+{
|
|
|
+
|
|
|
+ /*die einzelnen Trainingsschritte
|
|
|
+ 1. auf allen Trainingsbilder SIFT Merkmale an den Gitterpunkten bei allen Auflösungen bestimmen
|
|
|
+ 2. PCA anwenden
|
|
|
+ 3. aus diesen ein GMM erstellen
|
|
|
+ 4. für jedes SIFT-Merkmal einen Vektor erstellen, der an der Stelle i die Wahrscheinlichkeit enthällt zur Verteilung i des GMM, Zur Zeit mit BoV-Alternative durch Moosman06 erledigt
|
|
|
+ 5. diese Vektoren in einem diskriminitativen Klassifikator ( z.B. SLR oder Randomized Forests) zusammen mit ihrer Klassenzugehörigkeit anlernen
|
|
|
+ */
|
|
|
+#ifdef DEBUG
|
|
|
+ cerr << "SemSegCsurka:: training starts" << endl;
|
|
|
+#endif
|
|
|
+
|
|
|
+ Examples examples;
|
|
|
+ examples.filename = "training";
|
|
|
+
|
|
|
+
|
|
|
+ // Welche Opponentsift Implementierung soll genutzt werden ?
|
|
|
+ LocalFeatureRepresentation *cSIFT = NULL;
|
|
|
+ LocalFeatureRepresentation *writeFeats = NULL;
|
|
|
+ LocalFeatureRepresentation *readFeats = NULL;
|
|
|
+ LocalFeatureRepresentation *getFeats = NULL;
|
|
|
+
|
|
|
+ if ( opSiftImpl == "NICE" )
|
|
|
+ {
|
|
|
+ cSIFT = new LFonHSG ( conf, "HSGtrain" );
|
|
|
+ }
|
|
|
+ else if ( opSiftImpl == "VANDESANDE" )
|
|
|
+ {
|
|
|
+ // the used features
|
|
|
+ cSIFT = new LFColorSande ( conf, "LFColorSandeTrain" );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ fthrow ( Exception, "feattype: %s not yet supported" << opSiftImpl );
|
|
|
+ }
|
|
|
+
|
|
|
+ getFeats = cSIFT;
|
|
|
+
|
|
|
+ if ( writefeat )
|
|
|
+ {
|
|
|
+ // write the features to a file, if there isn't any to read
|
|
|
+ writeFeats = new LFWriteCache ( conf, cSIFT );
|
|
|
+ getFeats = writeFeats;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( readfeat )
|
|
|
+ {
|
|
|
+ // read the features from a file
|
|
|
+ if ( writefeat )
|
|
|
+ {
|
|
|
+ readFeats = new LFReadCache ( conf, writeFeats, -1 );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ readFeats = new LFReadCache ( conf, cSIFT, -1 );
|
|
|
+ }
|
|
|
+ getFeats = readFeats;
|
|
|
+ }
|
|
|
+
|
|
|
+ // additional Colorfeatures
|
|
|
+ LocalFeatureColorWeijer lcw ( conf );
|
|
|
+
|
|
|
+ int lfdimension = -1;
|
|
|
+
|
|
|
+ const LabeledSet train = * ( *md ) ["train"];
|
|
|
+ const LabeledSet *trainp = &train;
|
|
|
+
|
|
|
+ ////////////////////////
|
|
|
+ // Merkmale berechnen //
|
|
|
+ ////////////////////////
|
|
|
+
|
|
|
+ std::string forbidden_classes_s = conf->gS ( "analysis", "donttrain", "" );
|
|
|
+ if ( forbidden_classes_s == "" )
|
|
|
+ {
|
|
|
+ forbidden_classes_s = conf->gS ( "analysis", "forbidden_classes", "" );
|
|
|
+ }
|
|
|
+ cn.getSelection ( forbidden_classes_s, forbidden_classes );
|
|
|
+ cerr << "forbidden: " << forbidden_classes_s << endl;
|
|
|
+
|
|
|
+ ProgressBar pb ( "Local Feature Extraction" );
|
|
|
+ pb.show();
|
|
|
+
|
|
|
+ int imgnb = 0;
|
|
|
+
|
|
|
+ LOOP_ALL_S ( *trainp )
|
|
|
+ {
|
|
|
+ //EACH_S(classno, currentFile);
|
|
|
+ EACH_INFO ( classno, info );
|
|
|
+
|
|
|
+ pb.update ( trainp->count() );
|
|
|
+
|
|
|
+ NICE::ColorImage img;
|
|
|
+
|
|
|
+ std::string currentFile = info.img();
|
|
|
+
|
|
|
+ CachedExample *ce = new CachedExample ( currentFile );
|
|
|
+
|
|
|
+ const LocalizationResult *locResult = info.localization();
|
|
|
+ if ( locResult->size() <= 0 )
|
|
|
+ {
|
|
|
+ fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+
|
|
|
+ int xsize, ysize;
|
|
|
+ ce->getImageSize ( xsize, ysize );
|
|
|
+
|
|
|
+ NICE::Image pixelLabels ( xsize, ysize );
|
|
|
+ pixelLabels.set ( 0 );
|
|
|
+ locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
+
|
|
|
+ try {
|
|
|
+ img = ColorImage ( currentFile );
|
|
|
+ } catch ( Exception ) {
|
|
|
+ cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ Globals::setCurrentImgFN ( currentFile );
|
|
|
+
|
|
|
+ VVector features;
|
|
|
+ VVector cfeatures;
|
|
|
+ VVector positions;
|
|
|
+
|
|
|
+ NICE::ColorImage cimg ( currentFile );
|
|
|
+
|
|
|
+ getFeats->extractFeatures ( img, features, positions );
|
|
|
+
|
|
|
+#ifdef DEBUG_CSURK
|
|
|
+ cout << "[log] SemSegCsruka::train -> " << currentFile << " an " << positions.size() << " Positionen wurden Features (Anz = " << features.size() << ") " << endl;
|
|
|
+ cout << "mit einer Dimension von " << features[ 0].size() << " extrahiert." << endl;
|
|
|
+#endif
|
|
|
+
|
|
|
+ if ( usecolorfeats )
|
|
|
+ lcw.getDescriptors ( cimg, cfeatures, positions );
|
|
|
+
|
|
|
+ int j = 0;
|
|
|
+
|
|
|
+ for ( VVector::const_iterator i = features.begin();
|
|
|
+ i != features.end();
|
|
|
+ i++, j++ )
|
|
|
+ {
|
|
|
+ const NICE::Vector & x = *i;
|
|
|
+ classno = pixelLabels.getPixel ( ( int ) positions[j][0], ( int ) positions[j][1] );
|
|
|
+
|
|
|
+ if ( forbidden_classes.find ( classno ) != forbidden_classes.end() )
|
|
|
+ continue;
|
|
|
+
|
|
|
+ if ( lfdimension < 0 )
|
|
|
+ lfdimension = ( int ) x.size();
|
|
|
+ else
|
|
|
+ assert ( lfdimension == ( int ) x.size() );
|
|
|
+
|
|
|
+ NICE::Vector *v = new NICE::Vector ( x );
|
|
|
+
|
|
|
+ if ( usecolorfeats && !usepca )
|
|
|
+ v->append ( cfeatures[j] );
|
|
|
+
|
|
|
+ Example example ( v );
|
|
|
+ example.position = imgnb;
|
|
|
+ examples.push_back (
|
|
|
+ pair<int, Example> ( classno, example ) );
|
|
|
+ }
|
|
|
+ features.clear();
|
|
|
+ positions.clear();
|
|
|
+ delete ce;
|
|
|
+ imgnb++;
|
|
|
+ }
|
|
|
+
|
|
|
+ pb.hide();
|
|
|
+
|
|
|
+ //////////////////
|
|
|
+ // PCA anwenden //
|
|
|
+ //////////////////
|
|
|
+
|
|
|
+ if ( usepca )
|
|
|
+ {
|
|
|
+ if ( !read_cache )
|
|
|
+ {
|
|
|
+ initializePCA ( examples );
|
|
|
+ }
|
|
|
+ doPCA ( examples );
|
|
|
+ lfdimension = dim;
|
|
|
+ }
|
|
|
+
|
|
|
+ /////////////////////////////////////////////////////
|
|
|
+ // Low-Level Features in High-Level transformieren //
|
|
|
+ /////////////////////////////////////////////////////
|
|
|
+
|
|
|
+ int hlfdimension = lfdimension;
|
|
|
+
|
|
|
+ if ( norm )
|
|
|
+ normalize ( examples );
|
|
|
+
|
|
|
+ if ( usegmm )
|
|
|
+ {
|
|
|
+ if ( !usepca && !norm )
|
|
|
+ normalize ( examples );
|
|
|
+ g = new GMM ( conf, gaussians );
|
|
|
+
|
|
|
+ if ( dogmm || !g->loadData ( cache + "/gmm" ) )
|
|
|
+ {
|
|
|
+ g->computeMixture ( examples );
|
|
|
+ if ( save_cache )
|
|
|
+ g->saveData ( cache + "/gmm" );
|
|
|
+ }
|
|
|
+
|
|
|
+ hlfdimension = gaussians;
|
|
|
+
|
|
|
+ if ( usefisher )
|
|
|
+ hlfdimension = gaussians * 2 * dim;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( usekmeans )
|
|
|
+ {
|
|
|
+ if ( !usepca || norm )
|
|
|
+ normalize ( examples );
|
|
|
+ k = new KMeansOnline ( gaussians );
|
|
|
+
|
|
|
+ k->cluster ( examples );
|
|
|
+
|
|
|
+ hlfdimension = gaussians;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( usekmeans || usegmm )
|
|
|
+ {
|
|
|
+ examples.clear();
|
|
|
+ pb.reset ( "Local Feature Extraction" );
|
|
|
+ lfdimension = -1;
|
|
|
+ pb.update ( trainp->count() );
|
|
|
+ LOOP_ALL_S ( *trainp )
|
|
|
+ {
|
|
|
+ EACH_INFO ( classno, info );
|
|
|
+
|
|
|
+ pb.update ( trainp->count() );
|
|
|
+
|
|
|
+ NICE::ColorImage img;
|
|
|
+
|
|
|
+ std::string currentFile = info.img();
|
|
|
+
|
|
|
+ CachedExample *ce = new CachedExample ( currentFile );
|
|
|
+
|
|
|
+ const LocalizationResult *locResult = info.localization();
|
|
|
+ if ( locResult->size() <= 0 )
|
|
|
+ {
|
|
|
+ fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+
|
|
|
+ int xsize, ysize;
|
|
|
+ ce->getImageSize ( xsize, ysize );
|
|
|
+
|
|
|
+ NICE::Image pixelLabels ( xsize, ysize );
|
|
|
+ pixelLabels.set ( 0 );
|
|
|
+ locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
+
|
|
|
+ try {
|
|
|
+ img = ColorImage ( currentFile );
|
|
|
+ }
|
|
|
+ catch ( Exception ) {
|
|
|
+ cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ Globals::setCurrentImgFN ( currentFile );
|
|
|
+
|
|
|
+ VVector features;
|
|
|
+ VVector cfeatures;
|
|
|
+ VVector positions;
|
|
|
+
|
|
|
+ NICE::ColorImage cimg ( currentFile );
|
|
|
+
|
|
|
+ getFeats->extractFeatures ( img, features, positions );
|
|
|
+
|
|
|
+ if ( usecolorfeats )
|
|
|
+ lcw.getDescriptors ( cimg, cfeatures, positions );
|
|
|
+
|
|
|
+ int j = 0;
|
|
|
+
|
|
|
+ Examples tmpex;
|
|
|
+
|
|
|
+ for ( VVector::const_iterator i = features.begin();
|
|
|
+ i != features.end();
|
|
|
+ i++, j++ )
|
|
|
+ {
|
|
|
+
|
|
|
+ const NICE::Vector & x = *i;
|
|
|
+
|
|
|
+ classno = pixelLabels.getPixel ( ( int ) positions[j][0], ( int ) positions[j][1] );
|
|
|
+
|
|
|
+ if ( forbidden_classes.find ( classno ) != forbidden_classes.end() )
|
|
|
+ continue;
|
|
|
+
|
|
|
+ if ( lfdimension < 0 )
|
|
|
+ lfdimension = ( int ) x.size();
|
|
|
+ else
|
|
|
+ assert ( lfdimension == ( int ) x.size() );
|
|
|
+
|
|
|
+ NICE::Vector *v = new NICE::Vector ( x );
|
|
|
+ if ( usecolorfeats )
|
|
|
+ v->append ( cfeatures[j] );
|
|
|
+
|
|
|
+ Example example ( v );
|
|
|
+ example.position = imgnb;
|
|
|
+ example.x = ( int ) positions[j][0];
|
|
|
+ example.y = ( int ) positions[j][1];
|
|
|
+ example.scale = positions[j][2];
|
|
|
+
|
|
|
+ tmpex.push_back ( pair<int, Example> ( classno, example ) );
|
|
|
+ }
|
|
|
+ tmpex.filename = currentFile;
|
|
|
+ if ( usepca )
|
|
|
+ {
|
|
|
+ doPCA ( tmpex );
|
|
|
+ }
|
|
|
+
|
|
|
+ convertLowToHigh ( tmpex, anteil );
|
|
|
+
|
|
|
+ smoothHL ( tmpex );
|
|
|
+
|
|
|
+ for ( int i = 0; i < ( int ) tmpex.size(); i++ )
|
|
|
+ {
|
|
|
+ examples.push_back ( pair<int, Example> ( tmpex[i].first, tmpex[i].second ) );
|
|
|
+ }
|
|
|
+
|
|
|
+ tmpex.clear();
|
|
|
+
|
|
|
+ features.clear();
|
|
|
+ positions.clear();
|
|
|
+ delete ce;
|
|
|
+ imgnb++;
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ pb.hide();
|
|
|
+ }
|
|
|
+ ////////////////////////////
|
|
|
+ // Klassifikator anlernen //
|
|
|
+ ////////////////////////////
|
|
|
+ FeaturePool fp;
|
|
|
+
|
|
|
+ Feature *f;
|
|
|
+
|
|
|
+ if ( usegmm || usekmeans )
|
|
|
+ f = new SparseVectorFeature ( hlfdimension );
|
|
|
+ else
|
|
|
+ f = new VectorFeature ( hlfdimension );
|
|
|
+
|
|
|
+ f->explode ( fp );
|
|
|
+ delete f;
|
|
|
+
|
|
|
+ if ( usecolorfeats && ! ( usekmeans || usegmm ) )
|
|
|
+ {
|
|
|
+ int dimension = hlfdimension + 11;
|
|
|
+ for ( int i = hlfdimension ; i < dimension ; i++ )
|
|
|
+ {
|
|
|
+ VectorFeature *f = new VectorFeature ( dimension );
|
|
|
+ f->feature_index = i;
|
|
|
+ fp.addFeature ( f, 1.0 / dimension );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ /*
|
|
|
+ cout << "train classifier" << endl;
|
|
|
+ fp.store(cout);
|
|
|
+ getchar();
|
|
|
+ for(int z = 0; z < examples.size(); z++)
|
|
|
+ {
|
|
|
+ cout << "examples.size() " << examples.size() << endl;
|
|
|
+ cout << "class: " << examples[z].first << endl;
|
|
|
+ cout << *examples[z].second.vec << endl;
|
|
|
+ getchar();
|
|
|
+ }*/
|
|
|
+
|
|
|
+ if ( classifier != NULL )
|
|
|
+ classifier->train ( fp, examples );
|
|
|
+ else
|
|
|
+ {
|
|
|
+ LabeledSetVector lvec;
|
|
|
+ convertExamplesToLSet ( examples, lvec );
|
|
|
+ vclassifier->teach ( lvec );
|
|
|
+ if ( usegmm )
|
|
|
+ convertLSetToSparseExamples ( examples, lvec );
|
|
|
+ else
|
|
|
+ convertLSetToExamples ( examples, lvec );
|
|
|
+ vclassifier->finishTeaching();
|
|
|
+ }
|
|
|
+
|
|
|
+ fp.destroy();
|
|
|
+
|
|
|
+ if ( save_cache )
|
|
|
+ {
|
|
|
+ if ( classifier != NULL )
|
|
|
+ classifier->save ( cache + "/fpcrf.data" );
|
|
|
+ else
|
|
|
+ vclassifier->save ( cache + "/veccl.data" );
|
|
|
+ }
|
|
|
+
|
|
|
+ ////////////
|
|
|
+ //clean up//
|
|
|
+ ////////////
|
|
|
+ for ( int i = 0; i < ( int ) examples.size(); i++ )
|
|
|
+ {
|
|
|
+ examples[i].second.clean();
|
|
|
+ }
|
|
|
+ examples.clear();
|
|
|
+
|
|
|
+ if ( cSIFT != NULL )
|
|
|
+ delete cSIFT;
|
|
|
+ if ( writeFeats != NULL )
|
|
|
+ delete writeFeats;
|
|
|
+ if ( readFeats != NULL )
|
|
|
+ delete readFeats;
|
|
|
+ getFeats = NULL;
|
|
|
+
|
|
|
+ trainpostprocess ( md );
|
|
|
+
|
|
|
+ cerr << "SemSeg training finished" << endl;
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::trainpostprocess ( const MultiDataset *md )
|
|
|
+{
|
|
|
+ cout << "start postprocess" << endl;
|
|
|
+ ////////////////////////////
|
|
|
+ // Postprocess trainieren //
|
|
|
+ ////////////////////////////
|
|
|
+ const LabeledSet train = * ( *md ) ["train"];
|
|
|
+ const LabeledSet *trainp = &train;
|
|
|
+
|
|
|
+ if ( userellocprior || srg != NULL || gcopt != NULL )
|
|
|
+ {
|
|
|
+ clog << "[log] SemSegCsurka::trainpostprocess: if ( userellocprior || srg != NULL || gcopt !=NULL )" << endl;
|
|
|
+ if ( userellocprior )
|
|
|
+ relloc->setClassNo ( cn.numClasses() );
|
|
|
+
|
|
|
+ if ( gcopt != NULL )
|
|
|
+ {
|
|
|
+ gcopt->setClassNo ( cn.numClasses() );
|
|
|
+ }
|
|
|
+
|
|
|
+ ProgressBar pb ( "learn relative location prior maps" );
|
|
|
+ pb.show();
|
|
|
+ LOOP_ALL_S ( *trainp ) // für alle Bilder den ersten Klassifikationsschritt durchführen um den zweiten Klassifikator anzutrainieren
|
|
|
+ {
|
|
|
+ EACH_INFO ( classno, info );
|
|
|
+
|
|
|
+ pb.update ( trainp->count() );
|
|
|
+
|
|
|
+ NICE::ColorImage img;
|
|
|
+
|
|
|
+ std::string currentFile = info.img();
|
|
|
+ Globals::setCurrentImgFN ( currentFile );
|
|
|
+ CachedExample *ce = new CachedExample ( currentFile );
|
|
|
+
|
|
|
+ const LocalizationResult *locResult = info.localization();
|
|
|
+ if ( locResult->size() <= 0 )
|
|
|
+ {
|
|
|
+ fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+
|
|
|
+ int xsize, ysize;
|
|
|
+ ce->getImageSize ( xsize, ysize );
|
|
|
+
|
|
|
+ NICE::Image pixelLabels ( xsize, ysize );
|
|
|
+ pixelLabels.set ( 0 );
|
|
|
+ locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
+
|
|
|
+ try {
|
|
|
+ img = ColorImage ( currentFile );
|
|
|
+ }
|
|
|
+ catch ( Exception )
|
|
|
+ {
|
|
|
+ cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ //Regionen ermitteln
|
|
|
+ NICE::Matrix mask;
|
|
|
+
|
|
|
+ int regionsize = seg->segRegions ( img, mask );
|
|
|
+#ifdef DEBUG_CSURK
|
|
|
+ Image overlay ( img.width(), img.height() );
|
|
|
+
|
|
|
+ double maxval = -numeric_limits<double>::max();
|
|
|
+
|
|
|
+ for ( int y = 0; y < img.height(); y++ )
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < img.width(); x++ )
|
|
|
+ {
|
|
|
+ int val = ( ( int ) mask ( x, y ) + 1 ) % 256;
|
|
|
+ overlay.setPixel ( x, y, val );
|
|
|
+ maxval = std::max ( mask ( x, y ), maxval );
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ cout << maxval << " different regions found" << endl;
|
|
|
+
|
|
|
+ NICE::showImageOverlay ( img, overlay, "Segmentation Result" );
|
|
|
+#endif
|
|
|
+
|
|
|
+ Examples regions;
|
|
|
+
|
|
|
+ vector<vector<int> > hists;
|
|
|
+
|
|
|
+ for ( int i = 0; i < regionsize; i++ )
|
|
|
+ {
|
|
|
+ Example tmp;
|
|
|
+ regions.push_back ( pair<int, Example> ( 0, tmp ) );
|
|
|
+ vector<int> hist ( cn.numClasses(), 0 );
|
|
|
+ hists.push_back ( hist );
|
|
|
+ }
|
|
|
+
|
|
|
+ for ( int x = 0; x < xsize; x++ )
|
|
|
+ {
|
|
|
+ for ( int y = 0; y < ysize; y++ )
|
|
|
+ {
|
|
|
+ int numb = mask ( x, y );
|
|
|
+ regions[numb].second.x += x;
|
|
|
+ regions[numb].second.y += y;
|
|
|
+ regions[numb].second.weight += 1.0;
|
|
|
+ hists[numb][pixelLabels.getPixel ( x,y ) ]++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ for ( int i = 0; i < regionsize; i++ )
|
|
|
+ {
|
|
|
+ regions[i].second.x /= ( int ) regions[i].second.weight;
|
|
|
+ regions[i].second.y /= ( int ) regions[i].second.weight;
|
|
|
+
|
|
|
+ int maxval = -numeric_limits<int>::max();
|
|
|
+ int maxpos = -1;
|
|
|
+ int secondpos = -1;
|
|
|
+ for ( int k = 0; k < ( int ) hists[i].size(); k++ )
|
|
|
+ {
|
|
|
+ if ( maxval < hists[i][k] )
|
|
|
+ {
|
|
|
+ maxval = hists[i][k];
|
|
|
+ secondpos = maxpos;
|
|
|
+ maxpos = k;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( cn.text ( maxpos ) == "various" )
|
|
|
+ regions[i].first = secondpos;
|
|
|
+ else
|
|
|
+ regions[i].first = maxpos;
|
|
|
+
|
|
|
+ }
|
|
|
+ if ( userellocprior )
|
|
|
+ relloc->trainPriorsMaps ( regions, xsize, ysize );
|
|
|
+
|
|
|
+ if ( srg != NULL )
|
|
|
+ srg->trainShape ( regions, mask );
|
|
|
+
|
|
|
+ if ( gcopt != NULL )
|
|
|
+ gcopt->trainImage ( regions, mask );
|
|
|
+
|
|
|
+ delete ce;
|
|
|
+
|
|
|
+ }
|
|
|
+ pb.hide();
|
|
|
+ if ( userellocprior )
|
|
|
+ relloc->finishPriorsMaps ( cn );
|
|
|
+
|
|
|
+ if ( srg != NULL )
|
|
|
+ srg->finishShape ( cn );
|
|
|
+
|
|
|
+ if ( gcopt != NULL )
|
|
|
+ gcopt->finishPP ( cn );
|
|
|
+ }
|
|
|
+ if ( userellocprior )
|
|
|
+ {
|
|
|
+ clog << "[log] SemSegCsurka::trainpostprocess: if ( userellocprior )" << endl;
|
|
|
+ ProgressBar pb ( "learn relative location classifier" );
|
|
|
+ pb.show();
|
|
|
+
|
|
|
+ int nummer = 0;
|
|
|
+ LOOP_ALL_S ( *trainp ) // für alle Bilder den ersten Klassifikationsschritt durchführen um den zweiten Klassifikator anzutrainieren
|
|
|
+ {
|
|
|
+ //EACH_S(classno, currentFile);
|
|
|
+ EACH_INFO ( classno, info );
|
|
|
+ nummer++;
|
|
|
+ pb.update ( trainp->count() );
|
|
|
+
|
|
|
+ NICE::Image img;
|
|
|
+ std::string currentFile = info.img();
|
|
|
+
|
|
|
+ CachedExample *ce = new CachedExample ( currentFile );
|
|
|
+
|
|
|
+ const LocalizationResult *locResult = info.localization();
|
|
|
+ if ( locResult->size() <= 0 )
|
|
|
+ {
|
|
|
+ fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+
|
|
|
+ int xsize, ysize;
|
|
|
+ ce->getImageSize ( xsize, ysize );
|
|
|
+
|
|
|
+ NICE::Image pixelLabels ( xsize, ysize );
|
|
|
+ pixelLabels.set ( 0 );
|
|
|
+ locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
+
|
|
|
+ try {
|
|
|
+ img = Preprocess::ReadImgAdv ( currentFile.c_str() );
|
|
|
+ }
|
|
|
+ catch ( Exception )
|
|
|
+ {
|
|
|
+ cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ Globals::setCurrentImgFN ( currentFile );
|
|
|
+
|
|
|
+ NICE::Image segresult;
|
|
|
+
|
|
|
+ NICE::MultiChannelImageT<double> probabilities ( xsize, ysize, classno );
|
|
|
+
|
|
|
+ Examples regions;
|
|
|
+
|
|
|
+ NICE::Matrix mask;
|
|
|
+
|
|
|
+ if ( savesteps )
|
|
|
+ {
|
|
|
+ std::ostringstream s1;
|
|
|
+ s1 << cache << "/rlpsave/" << nummer;
|
|
|
+
|
|
|
+ std::string filename = s1.str();
|
|
|
+ s1 << ".probs";
|
|
|
+
|
|
|
+ std::string fn2 = s1.str();
|
|
|
+
|
|
|
+ FILE *file;
|
|
|
+ file = fopen ( filename.c_str(), "r" );
|
|
|
+
|
|
|
+ if ( file == NULL )
|
|
|
+ {
|
|
|
+ //berechnen
|
|
|
+ classifyregions ( ce, segresult, probabilities, regions, mask );
|
|
|
+ //schreiben
|
|
|
+ ofstream fout ( filename.c_str(), ios::app );
|
|
|
+ fout << regions.size() << endl;
|
|
|
+ for ( int i = 0; i < ( int ) regions.size(); i++ )
|
|
|
+ {
|
|
|
+ regions[i].second.store ( fout );
|
|
|
+ fout << regions[i].first << endl;
|
|
|
+ }
|
|
|
+ fout.close();
|
|
|
+ probabilities.store ( fn2 );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ //lesen
|
|
|
+ ifstream fin ( filename.c_str() );
|
|
|
+ int size;
|
|
|
+ fin >> size;
|
|
|
+
|
|
|
+ for ( int i = 0; i < size; i++ )
|
|
|
+ {
|
|
|
+ Example ex;
|
|
|
+ ex.restore ( fin );
|
|
|
+ int tmp;
|
|
|
+ fin >> tmp;
|
|
|
+ regions.push_back ( pair<int, Example> ( tmp, ex ) );
|
|
|
+ }
|
|
|
+
|
|
|
+ fin.close();
|
|
|
+
|
|
|
+ probabilities.restore ( fn2 );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ classifyregions ( ce, segresult, probabilities, regions, mask );
|
|
|
+ }
|
|
|
+
|
|
|
+ relloc->trainClassifier ( regions, probabilities );
|
|
|
+
|
|
|
+ delete ce;
|
|
|
+
|
|
|
+ }
|
|
|
+ relloc->finishClassifier();
|
|
|
+ pb.hide();
|
|
|
+
|
|
|
+ relloc->save ( cache + "/rlp" );
|
|
|
+ }
|
|
|
+ cout << "finished postprocess" << endl;
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::classifyregions ( CachedExample *ce, NICE::Image & segresult, NICE::MultiChannelImageT<double> & probabilities, Examples &Regionen, NICE::Matrix & mask )
|
|
|
+{
|
|
|
+ /* die einzelnen Testschritte:
|
|
|
+ 1.x auf dem Testbild alle SIFT Merkmale an den Gitterpunkten bei allen Auflösungen bestimmen
|
|
|
+ 2.x für jedes SIFT-Merkmal einen Vektor erstellen, der an der Stelle i die Wahrscheinlichkeit enthällt zur Verteilung i des GMM
|
|
|
+ 3.x diese Vektoren klassifizieren, so dass für jede Klasse die Wahrscheinlichkeit gespeichert wird
|
|
|
+ 4.x für jeden Pixel die Wahrscheinlichkeiten mitteln aus allen Patches, in denen der Pixel vorkommt
|
|
|
+ 5.x das Originalbild in homogene Bereiche segmentieren
|
|
|
+ 6.x die homogenen Bereiche bekommen die gemittelten Wahrscheinlichkeiten ihrer Pixel
|
|
|
+ 7. (einzelne Klassen mit einem globalen Klassifikator ausschließen)
|
|
|
+ 8.x jeder Pixel bekommt die Klasse seiner Region zugeordnet
|
|
|
+ */
|
|
|
+
|
|
|
+ clog << "[log] SemSegCsruka::classifyregions" << endl;
|
|
|
+ int xsize, ysize;
|
|
|
+
|
|
|
+ ce->getImageSize ( xsize, ysize );
|
|
|
+
|
|
|
+ probabilities.reInit ( xsize, ysize, classNames->getMaxClassno() + 1 );
|
|
|
+ clog << "[log] SemSegCsruka::classifyregions: probabilities.channels() = " << probabilities.channels() << endl;
|
|
|
+
|
|
|
+ segresult.resize ( xsize, ysize );
|
|
|
+
|
|
|
+ Examples pce;
|
|
|
+
|
|
|
+ // Welche Opponentsift Implementierung soll genutzt werden ?
|
|
|
+ LocalFeatureRepresentation *cSIFT = NULL;
|
|
|
+ LocalFeatureRepresentation *writeFeats = NULL;
|
|
|
+ LocalFeatureRepresentation *readFeats = NULL;
|
|
|
+ LocalFeatureRepresentation *getFeats = NULL;
|
|
|
+
|
|
|
+
|
|
|
+ if ( opSiftImpl == "NICE" )
|
|
|
+ {
|
|
|
+ cSIFT = new LFonHSG ( conf, "HSGtest" );
|
|
|
+ }
|
|
|
+ else if ( opSiftImpl == "VANDESANDE" )
|
|
|
+ {
|
|
|
+ // the used features
|
|
|
+ cSIFT = new LFColorSande ( conf, "LFColorSandeTest" );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ fthrow ( Exception, "feattype: %s not yet supported" << opSiftImpl );
|
|
|
+ }
|
|
|
+
|
|
|
+ getFeats = cSIFT;
|
|
|
+
|
|
|
+ if ( writefeat )
|
|
|
+ {
|
|
|
+ // write the features to a file, if there isn't any to read
|
|
|
+ writeFeats = new LFWriteCache ( conf, cSIFT );
|
|
|
+ getFeats = writeFeats;
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( readfeat )
|
|
|
+ {
|
|
|
+ // read the features from a file
|
|
|
+ if ( writefeat )
|
|
|
+ {
|
|
|
+ readFeats = new LFReadCache ( conf, writeFeats, -1 );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ readFeats = new LFReadCache ( conf, cSIFT, -1 );
|
|
|
+ }
|
|
|
+ getFeats = readFeats;
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ // additional Colorfeatures
|
|
|
+ LocalFeatureColorWeijer lcw ( conf );
|
|
|
+
|
|
|
+ NICE::ColorImage img;
|
|
|
+
|
|
|
+ std::string currentFile = Globals::getCurrentImgFN();
|
|
|
+
|
|
|
+ try
|
|
|
+ {
|
|
|
+ img = ColorImage ( currentFile );
|
|
|
+ }
|
|
|
+ catch ( Exception )
|
|
|
+ {
|
|
|
+ cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
|
|
|
+ }
|
|
|
+
|
|
|
+ VVector features;
|
|
|
+ VVector cfeatures;
|
|
|
+ VVector positions;
|
|
|
+
|
|
|
+ getFeats->extractFeatures ( img, features, positions );
|
|
|
+
|
|
|
+ if ( usecolorfeats )
|
|
|
+ lcw.getDescriptors ( img, cfeatures, positions );
|
|
|
+
|
|
|
+ set<double> scales;
|
|
|
+
|
|
|
+ int j = 0;
|
|
|
+ int lfdimension = -1;
|
|
|
+ for ( VVector::const_iterator i = features.begin();
|
|
|
+ i != features.end();
|
|
|
+ i++, j++ )
|
|
|
+ {
|
|
|
+ const NICE::Vector & x = *i;
|
|
|
+
|
|
|
+ if ( lfdimension < 0 ) lfdimension = ( int ) x.size();
|
|
|
+ else assert ( lfdimension == ( int ) x.size() );
|
|
|
+
|
|
|
+ NICE::Vector *v = new NICE::Vector ( x );
|
|
|
+
|
|
|
+ if ( usecolorfeats )
|
|
|
+ v->append ( cfeatures[j] );
|
|
|
+
|
|
|
+ Example tmp = Example ( v );
|
|
|
+ tmp.x = ( int ) positions[j][0];
|
|
|
+ tmp.y = ( int ) positions[j][1];
|
|
|
+ tmp.width = ( int ) ( 16.0 * positions[j][2] );
|
|
|
+ tmp.height = tmp.width;
|
|
|
+ tmp.scale = positions[j][2];
|
|
|
+ scales.insert ( positions[j][2] );
|
|
|
+ pce.push_back ( pair<int, Example> ( 0, tmp ) );
|
|
|
+ }
|
|
|
+
|
|
|
+ //////////////////
|
|
|
+ // PCA anwenden //
|
|
|
+ //////////////////
|
|
|
+ pce.filename = currentFile;
|
|
|
+ if ( usepca )
|
|
|
+ {
|
|
|
+ doPCA ( pce );
|
|
|
+ lfdimension = dim;
|
|
|
+ }
|
|
|
+
|
|
|
+ //////////////////
|
|
|
+ // BoV anwenden //
|
|
|
+ //////////////////
|
|
|
+ if ( norm )
|
|
|
+ normalize ( pce );
|
|
|
+ if ( usegmm || usekmeans )
|
|
|
+ {
|
|
|
+ if ( !usepca && !norm )
|
|
|
+ normalize ( pce );
|
|
|
+ convertLowToHigh ( pce );
|
|
|
+ smoothHL ( pce );
|
|
|
+ lfdimension = gaussians;
|
|
|
+ }
|
|
|
+
|
|
|
+ /////////////////////////////////////////
|
|
|
+ // Wahrscheinlichkeitskarten erstellen //
|
|
|
+ /////////////////////////////////////////
|
|
|
+ int klassen = probabilities.channels();
|
|
|
+ NICE::MultiChannelImageT<double> preMap ( xsize, ysize, klassen*scales.size() );
|
|
|
+
|
|
|
+ // initialisieren
|
|
|
+ for ( int y = 0 ; y < ysize ; y++ )
|
|
|
+ for ( int x = 0 ; x < xsize ; x++ )
|
|
|
+ {
|
|
|
+ // alles zum Hintergrund machen
|
|
|
+ segresult.setPixel ( x, y, 0 );
|
|
|
+ // Die Wahrscheinlichkeitsmaps auf 0 initialisieren
|
|
|
+ for ( int i = 0 ; i < ( int ) probabilities.channels(); i++ )
|
|
|
+ {
|
|
|
+ probabilities[i](x,y) = 0.0;
|
|
|
+ }
|
|
|
+ for ( int j = 0; j < ( int ) preMap.channels(); j++ )
|
|
|
+ {
|
|
|
+ preMap[j](x,y) = 0.0;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ // Die Wahrscheinlichkeitsmaps mit den einzelnen Wahrscheinlichkeiten je Skalierung füllen
|
|
|
+ int scalesize = scales.size();
|
|
|
+
|
|
|
+ // Globale Häufigkeiten akkumulieren
|
|
|
+ FullVector fV ( ( int ) probabilities.channels() );
|
|
|
+
|
|
|
+ for ( int i = 0; i < fV.size(); i++ )
|
|
|
+ fV[i] = 0.0;
|
|
|
+
|
|
|
+ // read allowed classes
|
|
|
+
|
|
|
+ string cndir = conf->gS ( "SemSegCsurka", "cndir", "" );
|
|
|
+ int classes = ( int ) probabilities.channels();
|
|
|
+ vector<int> useclass ( classes, 1 );
|
|
|
+
|
|
|
+ std::vector< std::string > list;
|
|
|
+ StringTools::split ( currentFile, '/', list );
|
|
|
+
|
|
|
+ string orgname = list.back();
|
|
|
+ if ( cndir != "" )
|
|
|
+ {
|
|
|
+ useclass = vector<int> ( classes, 0 );
|
|
|
+ ifstream infile ( ( cndir + "/" + orgname + ".dat" ).c_str() );
|
|
|
+ while ( !infile.eof() && infile.good() )
|
|
|
+ {
|
|
|
+ int tmp;
|
|
|
+ infile >> tmp;
|
|
|
+ if ( tmp >= 0 && tmp < classes )
|
|
|
+ {
|
|
|
+ useclass[tmp] = 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#ifdef UNCERTAINTY
|
|
|
+ std::vector<FloatImage> uncert;
|
|
|
+ std::vector<FloatImage> gpUncertainty;
|
|
|
+ std::vector<FloatImage> gpMean;
|
|
|
+ std::vector<FloatImage> gpMeanRatio;
|
|
|
+ std::vector<FloatImage> gpWeightAll;
|
|
|
+ std::vector<FloatImage> gpWeightRatio;
|
|
|
+// std::vector<FloatImage> gpImpactAll;
|
|
|
+// std::vector<FloatImage> gpImpactRatio;
|
|
|
+
|
|
|
+ //pre-allocate storage -- one image per scale and method
|
|
|
+ for(int s = 0; s < scalesize; s++)
|
|
|
+ {
|
|
|
+ uncert.push_back(FloatImage(xsize, ysize));
|
|
|
+ uncert[s].set(0.0);
|
|
|
+
|
|
|
+ gpUncertainty.push_back(FloatImage(xsize, ysize));
|
|
|
+ gpMean.push_back(FloatImage(xsize, ysize));
|
|
|
+ gpMeanRatio.push_back(FloatImage(xsize, ysize));
|
|
|
+ gpWeightAll.push_back(FloatImage(xsize, ysize));
|
|
|
+ gpWeightRatio.push_back(FloatImage(xsize, ysize));
|
|
|
+/* gpImpactAll.push_back(FloatImage(xsize, ysize));
|
|
|
+ gpImpactRatio.push_back(FloatImage(xsize, ysize)); */
|
|
|
+
|
|
|
+ gpUncertainty[s].set(0.0);
|
|
|
+ gpMean[s].set(0.0);
|
|
|
+ gpMeanRatio[s].set(0.0);
|
|
|
+ gpWeightAll[s].set(0.0);
|
|
|
+ gpWeightRatio[s].set(0.0);
|
|
|
+// gpImpactAll[s].set(0.0);
|
|
|
+// gpImpactRatio[s].set(0.0);
|
|
|
+ }
|
|
|
+
|
|
|
+ ColorImage imgrgb ( xsize, ysize );
|
|
|
+ std::string s;
|
|
|
+ std::stringstream out;
|
|
|
+ std::vector< std::string > list2;
|
|
|
+ StringTools::split ( Globals::getCurrentImgFN (), '/', list2 );
|
|
|
+ out << "uncertainty/" << list2.back();
|
|
|
+
|
|
|
+ double maxu = -numeric_limits<double>::max();
|
|
|
+ double minu = numeric_limits<double>::max();
|
|
|
+
|
|
|
+ double gpNoise = conf->gD("GPHIK", "noise", 0.01);
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+ #ifdef UNCERTAINTY
|
|
|
+ std::cerr << "compute values for uncertainty stuff as well" << std::endl;
|
|
|
+ #endif
|
|
|
+
|
|
|
+ if ( classifier != NULL )
|
|
|
+ {
|
|
|
+ clog << "[log] SemSegCsruka::classifyregions: Wahrscheinlichkeitskarten erstellen: classifier != NULL" << endl;
|
|
|
+#pragma omp parallel for
|
|
|
+ for ( int s = 0; s < scalesize; s++ )
|
|
|
+ {
|
|
|
+#pragma omp parallel for
|
|
|
+ for ( int i = s; i < ( int ) pce.size(); i += scalesize )
|
|
|
+ {
|
|
|
+ ClassificationResult r = classifier->classify ( pce[i].second );
|
|
|
+
|
|
|
+ #ifdef UNCERTAINTY
|
|
|
+ //we need this if we want to compute GP-AL-measure lateron
|
|
|
+ double minMeanAbs ( numeric_limits<double>::max() );
|
|
|
+ double maxMeanAbs ( 0.0 );
|
|
|
+ double sndMaxMeanAbs ( 0.0 );
|
|
|
+ #endif
|
|
|
+
|
|
|
+ for ( int j = 0 ; j < r.scores.size(); j++ )
|
|
|
+ {
|
|
|
+ if ( useclass[j] == 0 )
|
|
|
+ continue;
|
|
|
+
|
|
|
+ fV[j] += r.scores[j];
|
|
|
+ preMap.set ( pce[i].second.x, pce[i].second.y, r.scores[j], j + s*klassen );
|
|
|
+
|
|
|
+ #ifdef UNCERTAINTY
|
|
|
+ //check whether we found a class with higher smaller abs mean than the current minimum
|
|
|
+ if (abs(r.scores[j]) < minMeanAbs)
|
|
|
+ minMeanAbs = abs(r.scores[j]);
|
|
|
+ //check for larger abs mean as well
|
|
|
+ if (abs(r.scores[j]) > maxMeanAbs)
|
|
|
+ {
|
|
|
+ sndMaxMeanAbs = maxMeanAbs;
|
|
|
+ maxMeanAbs = abs(r.scores[j]);
|
|
|
+ }
|
|
|
+ // and also for the second highest mean of all classes
|
|
|
+ else if (abs(r.scores[j]) > sndMaxMeanAbs)
|
|
|
+ {
|
|
|
+ sndMaxMeanAbs = abs(r.scores[j]);
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+ }
|
|
|
+
|
|
|
+ /*if(r.uncertainty < 0.0)
|
|
|
+ {
|
|
|
+ cerr << "uncertainty: " << r.uncertainty << endl;
|
|
|
+ pce[i].second.svec->store(cerr);
|
|
|
+ cerr << endl;
|
|
|
+ exit(-1);
|
|
|
+ }*/
|
|
|
+#ifdef UNCERTAINTY
|
|
|
+ uncert[s] ( pce[i].second.x, pce[i].second.y ) = r.uncertainty;
|
|
|
+ maxu = std::max ( r.uncertainty, maxu );
|
|
|
+ minu = std::min ( r.uncertainty, minu );
|
|
|
+
|
|
|
+
|
|
|
+ double firstTerm (1.0 / sqrt(r.uncertainty+gpNoise));
|
|
|
+
|
|
|
+ //compute the heuristic GP-UNCERTAINTY, as proposed by Kapoor et al. in IJCV 2010
|
|
|
+ // GP-UNCERTAINTY : |mean| / sqrt(var^2 + gpnoise^2)
|
|
|
+ gpUncertainty[s] ( pce[i].second.x, pce[i].second.y ) = maxMeanAbs*firstTerm; //firstTerm = 1.0 / sqrt(r.uncertainty+gpNoise))
|
|
|
+
|
|
|
+ // compute results when we take the lowest mean value of all classes
|
|
|
+ gpMean[s] ( pce[i].second.x, pce[i].second.y ) = minMeanAbs;
|
|
|
+
|
|
|
+ //look at the difference in the absolut mean values for the most plausible class
|
|
|
+ // and the second most plausible class
|
|
|
+ gpMeanRatio[s] ( pce[i].second.x, pce[i].second.y ) = maxMeanAbs - sndMaxMeanAbs;
|
|
|
+
|
|
|
+
|
|
|
+ //compute the weight in the alpha-vector for every sample after assuming it to be
|
|
|
+ // added to the training set.
|
|
|
+ // Thereby, we measure its "importance" for the current model
|
|
|
+ //
|
|
|
+ //double firstTerm is already computed
|
|
|
+ //
|
|
|
+ //the second term is only needed when computing impacts
|
|
|
+ //double secondTerm; //this is the nasty guy :/
|
|
|
+
|
|
|
+ //--- compute the third term
|
|
|
+ // this is the difference between predicted label and GT label
|
|
|
+ std::vector<double> diffToPositive; diffToPositive.clear();
|
|
|
+ std::vector<double> diffToNegative; diffToNegative.clear();
|
|
|
+ double diffToNegativeSum(0.0);
|
|
|
+
|
|
|
+ for ( int j = 0 ; j < r.scores.size(); j++ )
|
|
|
+ {
|
|
|
+ if ( useclass[j] == 0 )
|
|
|
+ continue;
|
|
|
+ // look at the difference to plus 1
|
|
|
+ diffToPositive.push_back(abs(r.scores[j] - 1));
|
|
|
+ // look at the difference to -1
|
|
|
+ diffToNegative.push_back(abs(r.scores[j] + 1));
|
|
|
+ //sum up the difference to -1
|
|
|
+ diffToNegativeSum += abs(r.scores[j] - 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ //let's subtract for every class its diffToNegative from the sum, add its diffToPositive,
|
|
|
+ //and use this as the third term for this specific class.
|
|
|
+ //the final value is obtained by minimizing over all classes
|
|
|
+ //
|
|
|
+ // originally, we minimize over all classes after building the final score
|
|
|
+ // however, the first and the second term do not depend on the choice of
|
|
|
+ // y*, therefore we minimize here already
|
|
|
+ double thirdTerm (numeric_limits<double>::max()) ;
|
|
|
+ for(uint tmpCnt = 0; tmpCnt < diffToPositive.size(); tmpCnt++)
|
|
|
+ {
|
|
|
+ double tmpVal ( diffToPositive[tmpCnt] + (diffToNegativeSum-diffToNegative[tmpCnt]) );
|
|
|
+ if (tmpVal < thirdTerm)
|
|
|
+ thirdTerm = tmpVal;
|
|
|
+ }
|
|
|
+ gpWeightAll[s] ( pce[i].second.x, pce[i].second.y ) = thirdTerm*firstTerm;
|
|
|
+
|
|
|
+ //now look on the ratio of the resulting weights for the most plausible
|
|
|
+ // against the second most plausible class
|
|
|
+ double thirdTermMostPlausible ( 0.0 ) ;
|
|
|
+ double thirdTermSecondMostPlausible ( 0.0 ) ;
|
|
|
+ for(uint tmpCnt = 0; tmpCnt < diffToPositive.size(); tmpCnt++)
|
|
|
+ {
|
|
|
+ if (diffToPositive[tmpCnt] > thirdTermMostPlausible)
|
|
|
+ {
|
|
|
+ thirdTermSecondMostPlausible = thirdTermMostPlausible;
|
|
|
+ thirdTermMostPlausible = diffToPositive[tmpCnt];
|
|
|
+ }
|
|
|
+ else if (diffToPositive[tmpCnt] > thirdTermSecondMostPlausible)
|
|
|
+ {
|
|
|
+ thirdTermSecondMostPlausible = diffToPositive[tmpCnt];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ //compute the resulting score
|
|
|
+ gpWeightRatio[s] ( pce[i].second.x, pce[i].second.y ) = (thirdTermMostPlausible - thirdTermSecondMostPlausible)*firstTerm;
|
|
|
+
|
|
|
+ //finally, look for this feature how it would affect to whole model (summarized by weight-vector alpha), if we would
|
|
|
+ //use it as an additional training example
|
|
|
+ //TODO this would be REALLY computational demanding. Do we really want to do this?
|
|
|
+// gpImpactAll[s] ( pce[i].second.x, pce[i].second.y ) = thirdTerm*firstTerm*secondTerm;
|
|
|
+// gpImpactRatio[s] ( pce[i].second.x, pce[i].second.y ) = (thirdTermMostPlausible - thirdTermSecondMostPlausible)*firstTerm*secondTerm;
|
|
|
+#endif
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+//#pragma omp parallel for
|
|
|
+ for ( int s = 0; s < scalesize; s++ )
|
|
|
+ {
|
|
|
+//#pragma omp parallel for
|
|
|
+ for ( int i = s; i < ( int ) pce.size(); i += scalesize )
|
|
|
+ {
|
|
|
+ ClassificationResult r = vclassifier->classify ( * ( pce[i].second.vec ) );
|
|
|
+
|
|
|
+ #ifdef UNCERTAINTY
|
|
|
+ //we need this if we want to compute GP-AL-measure lateron
|
|
|
+ double minMeanAbs ( numeric_limits<double>::max() );
|
|
|
+ double maxMeanAbs ( 0.0 );
|
|
|
+ double sndMaxMeanAbs ( 0.0 );
|
|
|
+ #endif
|
|
|
+
|
|
|
+ for ( int j = 0 ; j < ( int ) r.scores.size(); j++ )
|
|
|
+ {
|
|
|
+ if ( useclass[j] == 0 )
|
|
|
+ continue;
|
|
|
+ fV[j] += r.scores[j];
|
|
|
+ preMap.set ( pce[i].second.x, pce[i].second.y, r.scores[j], j + s*klassen );
|
|
|
+
|
|
|
+ #ifdef UNCERTAINTY
|
|
|
+ //check whether we found a class with higher smaller abs mean than the current minimum
|
|
|
+ if (abs(r.scores[j]) < minMeanAbs)
|
|
|
+ minMeanAbs = abs(r.scores[j]);
|
|
|
+ //check for larger abs mean as well
|
|
|
+ if (abs(r.scores[j]) > maxMeanAbs)
|
|
|
+ {
|
|
|
+ sndMaxMeanAbs = maxMeanAbs;
|
|
|
+ maxMeanAbs = abs(r.scores[j]);
|
|
|
+ }
|
|
|
+ // and also for the second highest mean of all classes
|
|
|
+ else if (abs(r.scores[j]) > sndMaxMeanAbs)
|
|
|
+ {
|
|
|
+ sndMaxMeanAbs = abs(r.scores[j]);
|
|
|
+ }
|
|
|
+ #endif
|
|
|
+ }
|
|
|
+#ifdef UNCERTAINTY
|
|
|
+ uncert[s] ( pce[i].second.x, pce[i].second.y ) = r.uncertainty;
|
|
|
+ maxu = std::max ( r.uncertainty, maxu );
|
|
|
+ minu = std::min ( r.uncertainty, minu );
|
|
|
+
|
|
|
+
|
|
|
+ double firstTerm (1.0 / sqrt(r.uncertainty+gpNoise));
|
|
|
+
|
|
|
+ //compute the heuristic GP-UNCERTAINTY, as proposed by Kapoor et al. in IJCV 2010
|
|
|
+ // GP-UNCERTAINTY : |mean| / sqrt(var^2 + gpnoise^2)
|
|
|
+ gpUncertainty[s] ( pce[i].second.x, pce[i].second.y ) = maxMeanAbs*firstTerm; //firstTerm = 1.0 / sqrt(r.uncertainty+gpNoise))
|
|
|
+
|
|
|
+ // compute results when we take the lowest mean value of all classes
|
|
|
+ gpMean[s] ( pce[i].second.x, pce[i].second.y ) = minMeanAbs;
|
|
|
+
|
|
|
+ //look at the difference in the absolut mean values for the most plausible class
|
|
|
+ // and the second most plausible class
|
|
|
+ gpMeanRatio[s] ( pce[i].second.x, pce[i].second.y ) = maxMeanAbs - sndMaxMeanAbs;
|
|
|
+
|
|
|
+
|
|
|
+ //compute the weight in the alpha-vector for every sample after assuming it to be
|
|
|
+ // added to the training set.
|
|
|
+ // Thereby, we measure its "importance" for the current model
|
|
|
+ //
|
|
|
+ //double firstTerm is already computed
|
|
|
+ //
|
|
|
+ //the second term is only needed when computing impacts
|
|
|
+ //double secondTerm; //this is the nasty guy :/
|
|
|
+
|
|
|
+ //--- compute the third term
|
|
|
+ // this is the difference between predicted label and GT label
|
|
|
+ std::vector<double> diffToPositive; diffToPositive.clear();
|
|
|
+ std::vector<double> diffToNegative; diffToNegative.clear();
|
|
|
+ double diffToNegativeSum(0.0);
|
|
|
+
|
|
|
+ for ( int j = 0 ; j < fV.size(); j++ )
|
|
|
+ {
|
|
|
+ if ( useclass[j] == 0 )
|
|
|
+ continue;
|
|
|
+ // look at the difference to plus 1
|
|
|
+ diffToPositive.push_back(abs(r.scores[j] - 1));
|
|
|
+ // look at the difference to -1
|
|
|
+ diffToNegative.push_back(abs(r.scores[j] + 1));
|
|
|
+ //sum up the difference to -1
|
|
|
+ diffToNegativeSum += abs(r.scores[j] - 1);
|
|
|
+ }
|
|
|
+
|
|
|
+ //let's subtract for every class its diffToNegative from the sum, add its diffToPositive,
|
|
|
+ //and use this as the third term for this specific class.
|
|
|
+ //the final value is obtained by minimizing over all classes
|
|
|
+ //
|
|
|
+ // originally, we minimize over all classes after building the final score
|
|
|
+ // however, the first and the second term do not depend on the choice of
|
|
|
+ // y*, therefore we minimize here already
|
|
|
+ double thirdTerm (numeric_limits<double>::max()) ;
|
|
|
+ for(uint tmpCnt = 0; tmpCnt < diffToPositive.size(); tmpCnt++)
|
|
|
+ {
|
|
|
+ double tmpVal ( diffToPositive[tmpCnt] + (diffToNegativeSum-diffToNegative[tmpCnt]) );
|
|
|
+ if (tmpVal < thirdTerm)
|
|
|
+ thirdTerm = tmpVal;
|
|
|
+ }
|
|
|
+ gpWeightAll[s] ( pce[i].second.x, pce[i].second.y ) = thirdTerm*firstTerm;
|
|
|
+
|
|
|
+ //now look on the ratio of the resulting weights for the most plausible
|
|
|
+ // against the second most plausible class
|
|
|
+ double thirdTermMostPlausible ( 0.0 ) ;
|
|
|
+ double thirdTermSecondMostPlausible ( 0.0 ) ;
|
|
|
+ for(uint tmpCnt = 0; tmpCnt < diffToPositive.size(); tmpCnt++)
|
|
|
+ {
|
|
|
+ if (diffToPositive[tmpCnt] > thirdTermMostPlausible)
|
|
|
+ {
|
|
|
+ thirdTermSecondMostPlausible = thirdTermMostPlausible;
|
|
|
+ thirdTermMostPlausible = diffToPositive[tmpCnt];
|
|
|
+ }
|
|
|
+ else if (diffToPositive[tmpCnt] > thirdTermSecondMostPlausible)
|
|
|
+ {
|
|
|
+ thirdTermSecondMostPlausible = diffToPositive[tmpCnt];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ //compute the resulting score
|
|
|
+ gpWeightRatio[s] ( pce[i].second.x, pce[i].second.y ) = (thirdTermMostPlausible - thirdTermSecondMostPlausible)*firstTerm;
|
|
|
+
|
|
|
+ //finally, look for this feature how it would affect to whole model (summarized by weight-vector alpha), if we would
|
|
|
+ //use it as an additional training example
|
|
|
+ //TODO this would be REALLY computational demanding. Do we really want to do this?
|
|
|
+// gpImpactAll[s] ( pce[i].second.x, pce[i].second.y ) = thirdTerm*firstTerm*secondTerm;
|
|
|
+// gpImpactRatio[s] ( pce[i].second.x, pce[i].second.y ) = (thirdTermMostPlausible - thirdTermSecondMostPlausible)*firstTerm*secondTerm;
|
|
|
+#endif
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ #ifdef UNCERTAINTY
|
|
|
+ std::cerr << "uncertainty values and derived scores successfully computed" << std::endl;
|
|
|
+ #endif
|
|
|
+
|
|
|
+#ifdef UNCERTAINTY
|
|
|
+ cout << "maxvdirect: " << maxu << " minvdirect: " << minu << endl;
|
|
|
+ //pre-allocate the image for filtering lateron
|
|
|
+ FloatImage gaussUncert ( xsize, ysize );
|
|
|
+
|
|
|
+ //just store the first scale
|
|
|
+ ICETools::convertToRGB ( uncert[0], imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "rough.ppm" );
|
|
|
+
|
|
|
+ //pre-allocate memory for filtering of scales
|
|
|
+ FloatImage gaussGPUncertainty ( xsize, ysize );
|
|
|
+ FloatImage gaussGPMean ( xsize, ysize );
|
|
|
+ FloatImage gaussGPMeanRatio( xsize, ysize );
|
|
|
+ FloatImage gaussGPWeightAll ( xsize, ysize );
|
|
|
+ FloatImage gaussGPWeightRatio ( xsize, ysize );
|
|
|
+
|
|
|
+ //just store the first scale for every method
|
|
|
+ ICETools::convertToRGB ( gpUncertainty[0], imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "gpUncertainty.ppm" );
|
|
|
+ ICETools::convertToRGB ( gpMean[0], imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "gpMean.ppm" );
|
|
|
+ ICETools::convertToRGB ( gpMeanRatio[0], imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "gpMeanRatio.ppm" );
|
|
|
+ ICETools::convertToRGB ( gpWeightAll[0], imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "gpWeightAll.ppm" );
|
|
|
+ ICETools::convertToRGB ( gpWeightRatio[0], imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "gpWeightRatio.ppm" );
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+ vector<double> scalesVec;
|
|
|
+ for ( set<double>::const_iterator iter = scales.begin();
|
|
|
+ iter != scales.end();
|
|
|
+ ++iter )
|
|
|
+ {
|
|
|
+ scalesVec.push_back ( *iter );
|
|
|
+ }
|
|
|
+
|
|
|
+#undef VISSEMSEG
|
|
|
+#ifdef VISSEMSEG
|
|
|
+
|
|
|
+ for ( int j = 0 ; j < ( int ) preMap.channels(); j++ )
|
|
|
+ {
|
|
|
+ cout << "klasse: " << j << endl;//" " << cn.text ( j ) << endl;
|
|
|
+
|
|
|
+ NICE::Matrix tmp ( preMap.ysize, preMap.xsize );
|
|
|
+ double maxval = 0.0;
|
|
|
+ for ( int y = 0; y < preMap.ysize; y++ )
|
|
|
+ for ( int x = 0; x < preMap.xsize; x++ )
|
|
|
+ {
|
|
|
+ double val = preMap.get ( x, y, j );
|
|
|
+ tmp ( y, x ) = val;
|
|
|
+ maxval = std::max ( val, maxval );
|
|
|
+ }
|
|
|
+
|
|
|
+ NICE::ColorImage imgrgb ( preMap.xsize, preMap.ysize );
|
|
|
+ ICETools::convertToRGB ( tmp, imgrgb );
|
|
|
+
|
|
|
+ cout << "maxval = " << maxval << " for class " << j << endl; //cn.text ( j ) << endl;
|
|
|
+
|
|
|
+ //Show ( ON, imgrgb, cn.text ( j ) );
|
|
|
+ //showImage(imgrgb, "Ergebnis");
|
|
|
+
|
|
|
+ std::string s;
|
|
|
+ std::stringstream out;
|
|
|
+ out << "tmpprebmap" << j << ".ppm";
|
|
|
+ s = out.str();
|
|
|
+ imgrgb.writePPM ( s );
|
|
|
+
|
|
|
+ //getchar();
|
|
|
+ }
|
|
|
+#endif
|
|
|
+
|
|
|
+ // Gaußfiltern
|
|
|
+ clog << "[log] SemSegCsruka::classifyregions: Wahrscheinlichkeitskarten erstellen -> Gaussfiltern" << endl;
|
|
|
+ for ( int s = 0; s < scalesize; s++ )
|
|
|
+ {
|
|
|
+ double sigma = sigmaweight * 16.0 * scalesVec[s];
|
|
|
+ cerr << "sigma: " << sigma << endl;
|
|
|
+#pragma omp parallel for
|
|
|
+ for ( int i = 0; i < klassen; i++ )
|
|
|
+ {
|
|
|
+ if ( forbidden_classes.find ( i ) != forbidden_classes.end() )
|
|
|
+ {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ int pos = i + s * klassen;
|
|
|
+
|
|
|
+ double maxval = preMap[pos](0,0);
|
|
|
+ double minval = maxval;
|
|
|
+
|
|
|
+ for ( int y = 0; y < ysize; y++ )
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < xsize; x++ )
|
|
|
+ {
|
|
|
+ maxval = std::max ( maxval, preMap[pos](x,y) );
|
|
|
+ minval = std::min ( minval, preMap[pos](x,y) );
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ NICE::FloatImage dblImg ( xsize, ysize );
|
|
|
+ NICE::FloatImage gaussImg ( xsize, ysize );
|
|
|
+
|
|
|
+ for ( int y = 0; y < ysize; y++ )
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < xsize; x++ )
|
|
|
+ {
|
|
|
+ dblImg.setPixel ( x, y, preMap[pos](x,y) );
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ filterGaussSigmaApproximate<float, float, float> ( dblImg, sigma, &gaussImg );
|
|
|
+
|
|
|
+ for ( int y = 0; y < ysize; y++ )
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < xsize; x++ )
|
|
|
+ {
|
|
|
+ preMap[pos](x,y) = gaussImg.getPixel ( x, y );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+#ifdef UNCERTAINTY
|
|
|
+ filterGaussSigmaApproximate<float, float, float> ( uncert[s], sigma, &gaussUncert );
|
|
|
+ uncert[s] = gaussUncert;
|
|
|
+
|
|
|
+ //apply the gauss-filtering to all scales of every method
|
|
|
+ filterGaussSigmaApproximate<float, float, float> ( gpUncertainty[s], sigma, &gaussGPUncertainty );
|
|
|
+ filterGaussSigmaApproximate<float, float, float> ( gpMean[s], sigma, &gaussGPMean );
|
|
|
+ filterGaussSigmaApproximate<float, float, float> ( gpMeanRatio[s], sigma, &gaussGPMeanRatio );
|
|
|
+ filterGaussSigmaApproximate<float, float, float> ( gpWeightAll[s], sigma, &gaussGPWeightAll );
|
|
|
+ filterGaussSigmaApproximate<float, float, float> ( gpWeightRatio[s], sigma, &gaussGPWeightRatio );
|
|
|
+
|
|
|
+ gpUncertainty[s] = gaussGPUncertainty;
|
|
|
+ gpMean[s] = gaussGPMean;
|
|
|
+ gpMeanRatio[s] = gaussGPMeanRatio;
|
|
|
+ gpWeightAll[s] = gaussGPWeightAll;
|
|
|
+ gpWeightRatio[s] = gaussGPWeightRatio;
|
|
|
+#endif
|
|
|
+ }
|
|
|
+
|
|
|
+ // Zusammenfassen und auswerten
|
|
|
+ clog << "[log] SemSegCsruka::classifyregions: Wahrscheinlichkeitskarten erstellen -> zusammenfassen und auswerten" << endl;
|
|
|
+//#pragma omp parallel for
|
|
|
+ for ( int x = 0; x < xsize; x++ )
|
|
|
+ {
|
|
|
+ for ( int y = 0; y < ysize; y++ )
|
|
|
+ {
|
|
|
+ for ( int j = 0 ; j < ( int ) probabilities.channels(); j++ )
|
|
|
+ {
|
|
|
+ double prob = 0.0;
|
|
|
+ for ( int s = 0; s < ( int ) scalesize; s++ )
|
|
|
+ {
|
|
|
+ prob += preMap.get ( x, y, j + s * klassen );
|
|
|
+ }
|
|
|
+
|
|
|
+ double val = prob / ( double ) ( scalesize );
|
|
|
+ probabilities.set ( x, y, val, j );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#ifdef UNCERTAINTY
|
|
|
+ for ( int x = 0; x < xsize; x++ )
|
|
|
+ {
|
|
|
+ for ( int y = 0; y < ysize; y++ )
|
|
|
+ {
|
|
|
+ for ( int s = 0; s < ( int ) scalesize; s++ )
|
|
|
+ {
|
|
|
+ gaussUncert(x,y) += uncert[s](x,y);
|
|
|
+ //and for the other methods as well
|
|
|
+ gaussGPUncertainty(x,y) += gpUncertainty[s](x,y);
|
|
|
+ gaussGPMean(x,y) += gpMean[s](x,y);
|
|
|
+ gaussGPMeanRatio(x,y) += gpMeanRatio[s](x,y);
|
|
|
+ gaussGPWeightAll(x,y) += gpWeightAll[s](x,y);
|
|
|
+ gaussGPWeightRatio(x,y) += gpWeightRatio[s](x,y);
|
|
|
+ }
|
|
|
+ gaussUncert(x,y)/=scalesize;
|
|
|
+ //and for the other methods as well
|
|
|
+ gaussGPUncertainty(x,y)/=scalesize;
|
|
|
+ gaussGPMean(x,y)/=scalesize;
|
|
|
+ gaussGPMeanRatio(x,y)/=scalesize;
|
|
|
+ gaussGPWeightAll(x,y)/=scalesize;
|
|
|
+ gaussGPWeightRatio(x,y)/=scalesize;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ maxu = -numeric_limits<double>::max();
|
|
|
+ minu = numeric_limits<double>::max();
|
|
|
+ for ( int y = 0; y < ysize; y++ )
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < xsize; x++ )
|
|
|
+ {
|
|
|
+ double val = uncert[0] ( x, y );
|
|
|
+ maxu = std::max ( val, maxu );
|
|
|
+ minu = std::min ( val, minu );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ cout << "maxvo = " << maxu << " minvo = " << minu << endl;
|
|
|
+
|
|
|
+ maxu = -numeric_limits<float>::max();
|
|
|
+ minu = numeric_limits<float>::max();
|
|
|
+
|
|
|
+ for ( int y = 0; y < ysize; y++ )
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < xsize; x++ )
|
|
|
+ {
|
|
|
+ double val = gaussUncert ( x, y );
|
|
|
+ maxu = std::max ( val, maxu );
|
|
|
+ minu = std::min ( val, minu );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ cout << "maxvf = " << maxu << " minvf = " << minu << endl;
|
|
|
+
|
|
|
+ gaussUncert(0,0) = 0.0;
|
|
|
+ gaussUncert(0,1) = 0.04;
|
|
|
+ ICETools::convertToRGB ( gaussUncert, imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "filtered.ppm" );
|
|
|
+
|
|
|
+ ICETools::convertToRGB ( gaussGPUncertainty, imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "gpUncertaintyFiltered.ppm" );
|
|
|
+ ICETools::convertToRGB ( gaussGPMean, imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "gpMeanFiltered.ppm" );
|
|
|
+ ICETools::convertToRGB ( gaussGPMeanRatio, imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "gpMeanRatioFiltered.ppm" );
|
|
|
+ ICETools::convertToRGB ( gaussGPWeightAll, imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "gpWeightAllFiltered.ppm" );
|
|
|
+ ICETools::convertToRGB ( gaussGPWeightRatio, imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "gpWeightRatioFiltered.ppm" );
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+#undef VISSEMSEG
|
|
|
+#ifdef VISSEMSEG
|
|
|
+
|
|
|
+ std::string s;
|
|
|
+ std::stringstream out;
|
|
|
+ std::vector< std::string > list2;
|
|
|
+ StringTools::split ( Globals::getCurrentImgFN (), '/', list2 );
|
|
|
+
|
|
|
+ out << "probmaps/" << list2.back() << ".probs";
|
|
|
+
|
|
|
+ s = out.str();
|
|
|
+
|
|
|
+ probabilities.store ( s );
|
|
|
+
|
|
|
+ for ( int j = 0 ; j < ( int ) probabilities.channels(); j++ )
|
|
|
+ {
|
|
|
+ cout << "klasse: " << j << endl;//" " << cn.text ( j ) << endl;
|
|
|
+
|
|
|
+ NICE::Matrix tmp ( probabilities.ysize, probabilities.xsize );
|
|
|
+ double maxval = 0.0;
|
|
|
+ for ( int y = 0; y < probabilities.ysize; y++ )
|
|
|
+ for ( int x = 0; x < probabilities.xsize; x++ )
|
|
|
+ {
|
|
|
+ double val = probabilities.get ( x, y, j );
|
|
|
+
|
|
|
+ tmp ( y, x ) = val;
|
|
|
+ maxval = std::max ( val, maxval );
|
|
|
+ }
|
|
|
+
|
|
|
+ NICE::ColorImage imgrgb ( probabilities.xsize, probabilities.ysize );
|
|
|
+ ICETools::convertToRGB ( tmp, imgrgb );
|
|
|
+
|
|
|
+ cout << "maxval = " << maxval << " for class " << j << endl; //cn.text ( j ) << endl;
|
|
|
+
|
|
|
+ //Show ( ON, imgrgb, cn.text ( j ) );
|
|
|
+ //showImage(imgrgb, "Ergebnis");
|
|
|
+
|
|
|
+ std::string s;
|
|
|
+ std::stringstream out;
|
|
|
+ out << "tmp" << j << ".ppm";
|
|
|
+ s = out.str();
|
|
|
+ imgrgb.writePPM ( s );
|
|
|
+
|
|
|
+ //getchar();
|
|
|
+ }
|
|
|
+#endif
|
|
|
+ if ( useregions )
|
|
|
+ {
|
|
|
+ if ( bestclasses > 0 )
|
|
|
+ {
|
|
|
+ PSSImageLevelPrior pss ( 0, bestclasses, 0.2 );
|
|
|
+ pss.setPrior ( fV );
|
|
|
+ pss.postprocess ( segresult, probabilities );
|
|
|
+ }
|
|
|
+
|
|
|
+ //Regionen ermitteln
|
|
|
+
|
|
|
+ int regionsize = seg->segRegions ( img, mask );
|
|
|
+
|
|
|
+ Regionen.clear();
|
|
|
+ vector<vector <double> > regionprob;
|
|
|
+
|
|
|
+#ifdef UNCERTAINTY
|
|
|
+ std::vector<double> regionUncert;
|
|
|
+
|
|
|
+ std::vector<double> regionGPUncertainty;
|
|
|
+ std::vector<double> regionGPMean;
|
|
|
+ std::vector<double> regionGPMeanRatio;
|
|
|
+ std::vector<double> regionGPWeightAll;
|
|
|
+ std::vector<double> regionGPWeightRatio;
|
|
|
+#endif
|
|
|
+
|
|
|
+ // Wahrscheinlichkeiten für jede Region initialisieren
|
|
|
+ for ( int i = 0; i < regionsize; i++ )
|
|
|
+ {
|
|
|
+ vector<double> tmp;
|
|
|
+ for ( int j = 0; j < ( int ) probabilities.channels(); j++ )
|
|
|
+ {
|
|
|
+ tmp.push_back ( 0.0 );
|
|
|
+ }
|
|
|
+ regionprob.push_back ( tmp );
|
|
|
+ Regionen.push_back ( pair<int, Example> ( 0, Example() ) );
|
|
|
+#ifdef UNCERTAINTY
|
|
|
+ regionUncert.push_back ( 0.0 );
|
|
|
+
|
|
|
+ regionGPUncertainty.push_back ( 0.0 );
|
|
|
+ regionGPMean.push_back ( 0.0 );
|
|
|
+ regionGPMeanRatio.push_back ( 0.0 );
|
|
|
+ regionGPWeightAll.push_back ( 0.0 );
|
|
|
+ regionGPWeightRatio.push_back ( 0.0 );
|
|
|
+#endif
|
|
|
+ }
|
|
|
+
|
|
|
+ // Wahrscheinlichkeiten für Regionen bestimmen
|
|
|
+ for ( int x = 0; x < xsize; x++ )
|
|
|
+ {
|
|
|
+ for ( int y = 0; y < ysize; y++ )
|
|
|
+ {
|
|
|
+ int pos = mask ( x, y );
|
|
|
+ Regionen[pos].second.weight += 1.0;
|
|
|
+ Regionen[pos].second.x += x;
|
|
|
+ Regionen[pos].second.y += y;
|
|
|
+ for ( int j = 0 ; j < ( int ) probabilities.channels(); j++ )
|
|
|
+ {
|
|
|
+ double val = probabilities.get ( x, y, j );
|
|
|
+ regionprob[pos][j] += val;
|
|
|
+ }
|
|
|
+#ifdef UNCERTAINTY
|
|
|
+ regionUncert[pos] += gaussUncert ( x, y );
|
|
|
+
|
|
|
+ regionGPUncertainty[pos] += gaussGPUncertainty ( x, y );
|
|
|
+ regionGPMean[pos] += gaussGPMean ( x, y );
|
|
|
+ regionGPMeanRatio[pos] += gaussGPMeanRatio ( x, y );
|
|
|
+ regionGPWeightAll[pos] += gaussGPWeightAll ( x, y );
|
|
|
+ regionGPWeightRatio[pos] += gaussGPWeightRatio ( x, y );
|
|
|
+#endif
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ /*
|
|
|
+ cout << "regions: " << regionsize << endl;
|
|
|
+ cout << "outfeats: " << endl;
|
|
|
+ for(int j = 0; j < regionprob.size(); j++)
|
|
|
+ {
|
|
|
+ for(int i = 0; i < regionprob[j].size(); i++)
|
|
|
+ {
|
|
|
+ cout << regionprob[j][i] << " ";
|
|
|
+ }
|
|
|
+ cout << endl;
|
|
|
+ }
|
|
|
+ cout << endl;
|
|
|
+ getchar();*/
|
|
|
+
|
|
|
+ // beste Wahrscheinlichkeit je Region wählen
|
|
|
+ for ( int i = 0; i < regionsize; i++ )
|
|
|
+ {
|
|
|
+ if ( Regionen[i].second.weight > 0 )
|
|
|
+ {
|
|
|
+ Regionen[i].second.x /= ( int ) Regionen[i].second.weight;
|
|
|
+ Regionen[i].second.y /= ( int ) Regionen[i].second.weight;
|
|
|
+ }
|
|
|
+ double maxval = -numeric_limits<double>::max();
|
|
|
+ int maxpos = 0;
|
|
|
+
|
|
|
+ for ( int j = 0 ; j < ( int ) regionprob[i].size(); j++ )
|
|
|
+ {
|
|
|
+ if ( forbidden_classes.find ( j ) != forbidden_classes.end() )
|
|
|
+ continue;
|
|
|
+
|
|
|
+ regionprob[i][j] /= Regionen[i].second.weight;
|
|
|
+
|
|
|
+ if ( maxval < regionprob[i][j] )
|
|
|
+ {
|
|
|
+ maxval = regionprob[i][j];
|
|
|
+ maxpos = j;
|
|
|
+ }
|
|
|
+ probabilities.set ( Regionen[i].second.x, Regionen[i].second.y, regionprob[i][j], j );
|
|
|
+ }
|
|
|
+
|
|
|
+ Regionen[i].first = maxpos;
|
|
|
+#ifdef UNCERTAINTY
|
|
|
+ regionUncert[i] /= Regionen[i].second.weight;
|
|
|
+
|
|
|
+ regionGPUncertainty[i] /= Regionen[i].second.weight;
|
|
|
+ regionGPMean[i] /= Regionen[i].second.weight;
|
|
|
+ regionGPMeanRatio[i] /= Regionen[i].second.weight;
|
|
|
+ regionGPWeightAll[i] /= Regionen[i].second.weight;
|
|
|
+ regionGPWeightRatio[i] /= Regionen[i].second.weight;
|
|
|
+#endif
|
|
|
+ }
|
|
|
+ // Pixel jeder Region labeln
|
|
|
+ for ( int y = 0; y < ( int ) mask.cols(); y++ )
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < ( int ) mask.rows(); x++ )
|
|
|
+ {
|
|
|
+ int pos = mask ( x, y );
|
|
|
+ segresult.setPixel ( x, y, Regionen[pos].first );
|
|
|
+#ifdef UNCERTAINTY
|
|
|
+ gaussUncert ( x, y ) = regionUncert[pos];
|
|
|
+
|
|
|
+ gaussGPUncertainty ( x, y ) = regionGPUncertainty[pos];
|
|
|
+ gaussGPMean ( x, y ) = regionGPMean[pos];
|
|
|
+ gaussGPMeanRatio ( x, y ) = regionGPMeanRatio[pos];
|
|
|
+ gaussGPWeightAll ( x, y ) = regionGPWeightAll[pos];
|
|
|
+ gaussGPWeightRatio ( x, y ) = regionGPWeightRatio[pos];
|
|
|
+#endif
|
|
|
+ }
|
|
|
+ }
|
|
|
+#ifdef UNCERTAINTY
|
|
|
+ maxu = -numeric_limits<float>::max();
|
|
|
+ minu = numeric_limits<float>::max();
|
|
|
+ for ( int y = 0; y < ysize; y++ )
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < xsize; x++ )
|
|
|
+ {
|
|
|
+ //float val = uncert(x,y);
|
|
|
+ double val = gaussUncert ( x, y );
|
|
|
+ maxu = std::max ( val, maxu );
|
|
|
+ minu = std::min ( val, minu );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ cout << "maxvr = " << maxu << " minvr = " << minu << endl;
|
|
|
+// uncert(0,0) = 1;
|
|
|
+// uncert(0,1) = 0;
|
|
|
+ ICETools::convertToRGB ( gaussUncert, imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "region.ppm" );
|
|
|
+
|
|
|
+ ICETools::convertToRGB ( gaussGPUncertainty, imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "gpUncertaintyRegion.ppm" );
|
|
|
+ ICETools::convertToRGB ( gaussGPMean, imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "gpMeanRegion.ppm" );
|
|
|
+ ICETools::convertToRGB ( gaussGPMeanRatio, imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "gpMeanRatioRegion.ppm" );
|
|
|
+ ICETools::convertToRGB ( gaussGPWeightAll, imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "gpWeightAllRegion.ppm" );
|
|
|
+ ICETools::convertToRGB ( gaussGPWeightRatio, imgrgb );
|
|
|
+ imgrgb.write ( out.str() + "gpWeightRatioRegion.ppm" );
|
|
|
+#endif
|
|
|
+
|
|
|
+#undef WRITEREGIONS
|
|
|
+#ifdef WRITEREGIONS
|
|
|
+ RegionGraph rg;
|
|
|
+ seg->getGraphRepresentation ( img, mask, rg );
|
|
|
+ for ( uint pos = 0; pos < regionprob.size(); pos++ )
|
|
|
+ {
|
|
|
+ rg[pos]->setProbs ( regionprob[pos] );
|
|
|
+ }
|
|
|
+
|
|
|
+ std::string s;
|
|
|
+ std::stringstream out;
|
|
|
+ std::vector< std::string > list;
|
|
|
+ StringTools::split ( Globals::getCurrentImgFN (), '/', list );
|
|
|
+
|
|
|
+ out << "rgout/" << list.back() << ".graph";
|
|
|
+ string writefile = out.str();
|
|
|
+ rg.write ( writefile );
|
|
|
+#endif
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+
|
|
|
+ PSSImageLevelPrior pss ( 1, 4, 0.2 );
|
|
|
+ pss.setPrior ( fV );
|
|
|
+ pss.postprocess ( segresult, probabilities );
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // Saubermachen:
|
|
|
+ clog << "[log] SemSegCsurka::classifyregions: sauber machen" << endl;
|
|
|
+ for ( int i = 0; i < ( int ) pce.size(); i++ )
|
|
|
+ {
|
|
|
+ pce[i].second.clean();
|
|
|
+ }
|
|
|
+ pce.clear();
|
|
|
+
|
|
|
+ if ( cSIFT != NULL )
|
|
|
+ delete cSIFT;
|
|
|
+ if ( writeFeats != NULL )
|
|
|
+ delete writeFeats;
|
|
|
+ if ( readFeats != NULL )
|
|
|
+ delete readFeats;
|
|
|
+ getFeats = NULL;
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegCsurka::semanticseg ( CachedExample *ce, NICE::Image & segresult, NICE::MultiChannelImageT<double> & probabilities )
|
|
|
+{
|
|
|
+ Examples regions;
|
|
|
+ NICE::Matrix regionmask;
|
|
|
+ classifyregions ( ce, segresult, probabilities, regions, regionmask );
|
|
|
+ if ( userellocprior || srg != NULL || gcopt != NULL )
|
|
|
+ {
|
|
|
+ if ( userellocprior )
|
|
|
+ relloc->postprocess ( regions, probabilities );
|
|
|
+
|
|
|
+ if ( srg != NULL )
|
|
|
+ srg->optimizeShape ( regions, regionmask, probabilities );
|
|
|
+
|
|
|
+ if ( gcopt != NULL )
|
|
|
+ gcopt->optimizeImage ( regions, regionmask, probabilities );
|
|
|
+
|
|
|
+ // Pixel jeder Region labeln
|
|
|
+ for ( int y = 0; y < ( int ) regionmask.cols(); y++ )
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < ( int ) regionmask.rows(); x++ )
|
|
|
+ {
|
|
|
+ int pos = regionmask ( x, y );
|
|
|
+ segresult.setPixel ( x, y, regions[pos].first );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+#ifndef NOVISUAL
|
|
|
+#undef VISSEMSEG
|
|
|
+#ifdef VISSEMSEG
|
|
|
+// showImage(img);
|
|
|
+ for ( int j = 0 ; j < ( int ) probabilities.channels(); j++ )
|
|
|
+ {
|
|
|
+ cout << "klasse: " << j << " " << cn.text ( j ) << endl;
|
|
|
+
|
|
|
+ NICE::Matrix tmp ( probabilities.ysize, probabilities.xsize );
|
|
|
+ double maxval = -numeric_limits<double>::max();
|
|
|
+ for ( int y = 0; y < probabilities.ysize; y++ )
|
|
|
+ for ( int x = 0; x < probabilities.xsize; x++ )
|
|
|
+ {
|
|
|
+ double val = probabilities.get ( x, y, j );
|
|
|
+ tmp ( y, x ) = val;
|
|
|
+ maxval = std::max ( val, maxval );
|
|
|
+ }
|
|
|
+
|
|
|
+ NICE::ColorImage imgrgb ( probabilities.xsize, probabilities.ysize );
|
|
|
+ ICETools::convertToRGB ( tmp, imgrgb );
|
|
|
+
|
|
|
+ cout << "maxval = " << maxval << " for class " << cn.text ( j ) << endl;
|
|
|
+
|
|
|
+ Show ( ON, imgrgb, cn.text ( j ) );
|
|
|
+ imgrgb.Write ( "tmp.ppm" );
|
|
|
+
|
|
|
+ getchar();
|
|
|
+ }
|
|
|
+#endif
|
|
|
+#endif
|
|
|
+
|
|
|
+}
|