|
@@ -1513,45 +1513,33 @@ void SemSegCsurka::classifyregions ( CachedExample *ce, NICE::Image & segresult,
|
|
|
{
|
|
|
if ( useclass[j] == 0 )
|
|
|
continue;
|
|
|
+
|
|
|
fV[j] += r.scores[j];
|
|
|
preMap.set ( pce[i].second.x, pce[i].second.y, r.scores[j], j + s*klassen );
|
|
|
}
|
|
|
|
|
|
- if(r.uncertainty < 0.0)
|
|
|
+ /*if(r.uncertainty < 0.0)
|
|
|
{
|
|
|
cerr << "uncertainty: " << r.uncertainty << endl;
|
|
|
pce[i].second.svec->store(cerr);
|
|
|
cerr << endl;
|
|
|
exit(-1);
|
|
|
- }
|
|
|
+ }*/
|
|
|
#ifdef UNCERTAINTY
|
|
|
uncert[s] ( pce[i].second.x, pce[i].second.y ) = r.uncertainty;
|
|
|
maxu = std::max ( r.uncertainty, maxu );
|
|
|
minu = std::min ( r.uncertainty, minu );
|
|
|
#endif
|
|
|
-
|
|
|
- /*if(s == 0 && i == pce.size()/2)
|
|
|
- {
|
|
|
- cout << "scores: ";
|
|
|
- for ( int j = 0 ; j < r.scores.size(); j++ )
|
|
|
- {
|
|
|
- if ( useclass[j] == 0 )
|
|
|
- continue;
|
|
|
- cout << r.scores[j] << " ";
|
|
|
- }
|
|
|
- cout << endl;
|
|
|
- }*/
|
|
|
-
|
|
|
}
|
|
|
}
|
|
|
}
|
|
|
else
|
|
|
{
|
|
|
|
|
|
-//#pragma omp parallel for
|
|
|
+#pragma omp parallel for
|
|
|
for ( int s = 0; s < scalesize; s++ )
|
|
|
{
|
|
|
-//#pragma omp parallel for
|
|
|
+#pragma omp parallel for
|
|
|
for ( int i = s; i < ( int ) pce.size(); i += scalesize )
|
|
|
{
|
|
|
ClassificationResult r = vclassifier->classify ( * ( pce[i].second.vec ) );
|
|
@@ -1627,11 +1615,13 @@ void SemSegCsurka::classifyregions ( CachedExample *ce, NICE::Image & segresult,
|
|
|
{
|
|
|
double sigma = sigmaweight * 16.0 * scalesVec[s];
|
|
|
cerr << "sigma: " << sigma << endl;
|
|
|
-//#pragma omp parallel for
|
|
|
+#pragma omp parallel for
|
|
|
for ( int i = 0; i < klassen; i++ )
|
|
|
{
|
|
|
if ( forbidden_classes.find ( i ) != forbidden_classes.end() )
|
|
|
+ {
|
|
|
continue;
|
|
|
+ }
|
|
|
|
|
|
int pos = i + s * klassen;
|
|
|
|