|
@@ -1,2016 +0,0 @@
|
|
|
-#include <sstream>
|
|
|
-#include <iostream>
|
|
|
-
|
|
|
-#include "SemSegCsurka.h"
|
|
|
-#include "vislearning/baselib/ICETools.h"
|
|
|
-#include "core/image/Filter.h"
|
|
|
-#include "semseg/semseg/postsegmentation/PSSImageLevelPrior.h"
|
|
|
-
|
|
|
-using namespace std;
|
|
|
-using namespace NICE;
|
|
|
-using namespace OBJREC;
|
|
|
-
|
|
|
-#undef DEBUG_CSURK
|
|
|
-#undef UNCERTAINTY
|
|
|
-
|
|
|
-SemSegCsurka::SemSegCsurka ( const Config *conf,
|
|
|
- const MultiDataset *md )
|
|
|
- : SemanticSegmentation ( conf, & ( md->getClassNames ( "train" ) ) )
|
|
|
-{
|
|
|
- this->conf = conf;
|
|
|
-
|
|
|
- opSiftImpl = conf->gS ( "Descriptor", "implementation", "VANDESANDE" );
|
|
|
- readfeat = conf->gB ( "Descriptor", "read", true );
|
|
|
- writefeat = conf->gB ( "Descriptor", "write", true );
|
|
|
-#ifdef DEBUG_CSURK
|
|
|
- clog << "[log] SemSegCsurka::SemSegCsurka: OppenentSift implemenation: " << opSiftImpl << endl;
|
|
|
-#endif
|
|
|
-
|
|
|
- save_cache = conf->gB ( "FPCPixel", "save_cache", true );
|
|
|
- read_cache = conf->gB ( "FPCPixel", "read_cache", false );
|
|
|
- cache = conf->gS ( "cache", "root", "" );
|
|
|
- sigmaweight = conf->gD ( "SemSegCsurka", "sigmaweight", 0.6 );
|
|
|
-
|
|
|
- dim = conf->gI ( "SemSegCsurka", "pcadim", 50 );
|
|
|
-
|
|
|
- usepca = conf->gB ( "SemSegCsurka", "usepca", true );
|
|
|
- calcpca = conf->gB ( "SemSegCsurka", "calcpca", false );
|
|
|
-
|
|
|
- usegmm = conf->gB ( "SemSegCsurka", "usegmm", false );
|
|
|
- norm = conf->gB ( "SemSegCsurka", "normalize", false );
|
|
|
- usefisher = conf->gB ( "SemSegCsurka", "usefisher", false );
|
|
|
- dogmm = conf->gB ( "SemSegCsurka", "dogmm", false );
|
|
|
- gaussians = conf->gI ( "SemSegCsurka", "gaussians", 50 );
|
|
|
-
|
|
|
- usekmeans = conf->gB ( "SemSegCsurka", "usekmeans", false );
|
|
|
- kmeansfeat = conf->gI ( "SemSegCsurka", "kmeansfeat", 50 );
|
|
|
- kmeanshard = conf->gB ( "SemSegCsurka", "kmeanshard", false );
|
|
|
-
|
|
|
- cname = conf->gS ( "SemSegCsurka", "classifier", "RandomForests" );
|
|
|
- anteil = conf->gD ( "SemSegCsurka", "anteil", 1.0 );
|
|
|
- userellocprior = conf->gB ( "SemSegCsurka", "rellocfeat", false );
|
|
|
- bool usesrg = conf->gB ( "SemSegCsurka", "usesrg", false );
|
|
|
-
|
|
|
- useregions = conf->gB ( "SemSegCsurka", "useregions", true );
|
|
|
- savesteps = conf->gB ( "SemSegCsurka", "savesteps", true );
|
|
|
- bool usegcopt = conf->gB ( "SemSegCsurka", "usegcopt", false );
|
|
|
-
|
|
|
- bestclasses = conf->gI ( "SemSegCsurka", "bestclasses", 0 );
|
|
|
-
|
|
|
- smoothhl = conf->gB ( "SemSegCsurka", "smoothhl", false );
|
|
|
- smoothfactor = conf->gD ( "SemSegCsurka", "smoothfactor", 1.0 );
|
|
|
-
|
|
|
- usecolorfeats = conf->gB ( "SemSegCsurka", "usecolorfeats", false );
|
|
|
-
|
|
|
- string rsMethod = conf->gS ( "SemSegCsurka", "segmentation", "meanshift" );
|
|
|
-
|
|
|
- g = NULL;
|
|
|
- k = NULL;
|
|
|
- relloc = NULL;
|
|
|
- srg = NULL;
|
|
|
- gcopt = NULL;
|
|
|
-
|
|
|
- if ( !useregions && ( userellocprior || usesrg ) )
|
|
|
- {
|
|
|
- cerr << "relative location priors and super region growing are just supported in combination with useregions" << endl;
|
|
|
- exit ( 1 );
|
|
|
- }
|
|
|
-
|
|
|
- if ( usepca )
|
|
|
- pca = PCA ( dim );
|
|
|
-
|
|
|
- RegionSegmentationMethod * tmpseg;
|
|
|
- if ( rsMethod == "meanshift" )
|
|
|
- tmpseg = new RSMeanShift ( conf );
|
|
|
- else
|
|
|
- tmpseg = new RSGraphBased ( conf );
|
|
|
-
|
|
|
- if ( save_cache )
|
|
|
- seg = new RSCache ( conf, tmpseg );
|
|
|
- else
|
|
|
- seg = tmpseg;
|
|
|
-
|
|
|
- if ( userellocprior )
|
|
|
- relloc = new RelativeLocationPrior ( conf );
|
|
|
- else
|
|
|
- relloc = NULL;
|
|
|
-
|
|
|
-#ifdef NICE_USELIB_ICE
|
|
|
- if ( usesrg )
|
|
|
- srg = new PPSuperregion ( conf );
|
|
|
- else
|
|
|
- srg = NULL;
|
|
|
-#else
|
|
|
- srg = NULL;
|
|
|
-#endif
|
|
|
-
|
|
|
- if ( usegcopt )
|
|
|
- gcopt = new PPGraphCut ( conf );
|
|
|
- else
|
|
|
- gcopt = NULL;
|
|
|
-
|
|
|
- classifier = NULL;
|
|
|
- vclassifier = NULL;
|
|
|
- if ( cname == "RandomForests" )
|
|
|
- classifier = new FPCRandomForests ( conf, "ClassifierForest" );
|
|
|
- else if ( cname == "SMLR" )
|
|
|
- classifier = new FPCSMLR ( conf, "ClassifierSMLR" );
|
|
|
- else if ( cname == "GPHIK" )
|
|
|
- classifier = new GPHIKClassifierNICE ( conf, "ClassiferGPHIK" );
|
|
|
- else
|
|
|
- vclassifier = CSGeneric::selectVecClassifier ( conf, "main" );
|
|
|
- //classifier = new FPCSparseMultinomialLogisticRegression(conf, "ClassifierSMLR");
|
|
|
-
|
|
|
- if ( classifier != NULL )
|
|
|
- classifier->setMaxClassNo ( classNames->getMaxClassno() );
|
|
|
- else
|
|
|
- vclassifier->setMaxClassNo ( classNames->getMaxClassno() );
|
|
|
-
|
|
|
- cn = md->getClassNames ( "train" );
|
|
|
-
|
|
|
- if ( read_cache )
|
|
|
- {
|
|
|
- fprintf ( stderr, "SemSegCsurka:: Reading classifier data from %s\n", ( cache + "/fpcrf.data" ).c_str() );
|
|
|
-
|
|
|
- if ( classifier != NULL )
|
|
|
- classifier->read ( cache + "/fpcrf.data" );
|
|
|
- else
|
|
|
- vclassifier->read ( cache + "/veccl.data" );
|
|
|
-
|
|
|
- if ( usepca )
|
|
|
- {
|
|
|
- std::string filename = cache + "/pca";
|
|
|
- pca.read ( filename );
|
|
|
- }
|
|
|
-
|
|
|
- if ( usegmm )
|
|
|
- {
|
|
|
- g = new GMM ( conf, gaussians );
|
|
|
-
|
|
|
- if ( !g->loadData ( cache + "/gmm" ) )
|
|
|
- {
|
|
|
- cerr << "SemSegCsurka:: no gmm file found" << endl;
|
|
|
- exit ( -1 );
|
|
|
- }
|
|
|
- }
|
|
|
- else {
|
|
|
- g = NULL;
|
|
|
- }
|
|
|
-
|
|
|
- if ( usekmeans )
|
|
|
- {
|
|
|
- k = new KMeansOnline ( gaussians );
|
|
|
- }
|
|
|
-
|
|
|
- fprintf ( stderr, "SemSegCsurka:: successfully read\n" );
|
|
|
-
|
|
|
- std::string filename = cache + "/rlp";
|
|
|
-
|
|
|
- FILE *value;
|
|
|
- value = fopen ( filename.c_str(), "r" );
|
|
|
-
|
|
|
- if ( value == NULL )
|
|
|
- {
|
|
|
- trainpostprocess ( md );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- if ( userellocprior )
|
|
|
- {
|
|
|
- relloc->read ( filename );
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- filename = cache + "/srg";
|
|
|
-
|
|
|
- value = fopen ( filename.c_str(), "r" );
|
|
|
-
|
|
|
- if ( value == NULL )
|
|
|
- {
|
|
|
- trainpostprocess ( md );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- if ( srg != NULL )
|
|
|
- {
|
|
|
- srg->read ( filename );
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- train ( md );
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-SemSegCsurka::~SemSegCsurka()
|
|
|
-{
|
|
|
- // clean-up
|
|
|
- if ( classifier != NULL )
|
|
|
- delete classifier;
|
|
|
- if ( vclassifier != NULL )
|
|
|
- delete vclassifier;
|
|
|
- if ( seg != NULL )
|
|
|
- delete seg;
|
|
|
-
|
|
|
- g = NULL;
|
|
|
- if ( g != NULL )
|
|
|
- delete g;
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka::normalize ( Examples &ex )
|
|
|
-{
|
|
|
- assert ( ex.size() > 0 );
|
|
|
- if ( vecmin.size() == 0 )
|
|
|
- {
|
|
|
- for ( int j = 0; j < ( int ) ex[0].second.vec->size(); j++ )
|
|
|
- {
|
|
|
- double maxv = -numeric_limits<int>::max();
|
|
|
- double minv = numeric_limits<int>::max();
|
|
|
- for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
- {
|
|
|
- maxv = std::max ( maxv, ( *ex[i].second.vec ) [j] );
|
|
|
- minv = std::min ( minv, ( *ex[i].second.vec ) [j] );
|
|
|
- }
|
|
|
- vecmin.push_back ( minv );
|
|
|
- vecmax.push_back ( maxv );
|
|
|
- }
|
|
|
- }
|
|
|
- for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
- {
|
|
|
- for ( int j = 0; j < ( int ) ex[i].second.vec->size(); j++ )
|
|
|
- {
|
|
|
- ( *ex[i].second.vec ) [j] = ( ( *ex[i].second.vec ) [j] - vecmin[j] ) / ( vecmax[j] - vecmin[j] );
|
|
|
- }
|
|
|
- }
|
|
|
- return;
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka::convertLowToHigh ( Examples &ex, double reduce )
|
|
|
-{
|
|
|
- cout << "converting low-level features to high-level features" << endl;
|
|
|
-
|
|
|
- if ( reduce >= 1.0 )
|
|
|
- {
|
|
|
- for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
- {
|
|
|
- SparseVector *f = new SparseVector();
|
|
|
-
|
|
|
- if ( usekmeans )
|
|
|
- {
|
|
|
- k->getDist ( *ex[i].second.vec, *f, kmeansfeat, kmeanshard );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- if ( usefisher )
|
|
|
- g->getFisher ( *ex[i].second.vec, *f );
|
|
|
- else
|
|
|
- g->getProbs ( *ex[i].second.vec, *f );
|
|
|
- }
|
|
|
- delete ex[i].second.vec;
|
|
|
-
|
|
|
- ex[i].second.vec = NULL;
|
|
|
- ex[i].second.svec = f;
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- srand ( time ( NULL ) );
|
|
|
-
|
|
|
- vector<bool> del ( ex.size(), false );
|
|
|
- cout << "Example size old " << ex.size() << endl;
|
|
|
-
|
|
|
-//#pragma omp parallel for
|
|
|
- for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
- {
|
|
|
- double rval = ( double ) rand() / ( double ) RAND_MAX;
|
|
|
- if ( rval < reduce )
|
|
|
- {
|
|
|
- SparseVector *f = new SparseVector();
|
|
|
-
|
|
|
- if ( usekmeans )
|
|
|
- k->getDist ( *ex[i].second.vec, *f, kmeansfeat, kmeanshard );
|
|
|
- else
|
|
|
- {
|
|
|
- if ( usefisher )
|
|
|
- g->getFisher ( *ex[i].second.vec, *f );
|
|
|
- else
|
|
|
- g->getProbs ( *ex[i].second.vec, *f );
|
|
|
- }
|
|
|
-
|
|
|
- delete ex[i].second.vec;
|
|
|
- ex[i].second.vec = NULL;
|
|
|
- ex[i].second.svec = f;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- del[i] = true;
|
|
|
- }
|
|
|
- }
|
|
|
- for ( int i = ( int ) del.size() - 1; i >= 0; i-- )
|
|
|
- {
|
|
|
- if ( del[i] )
|
|
|
- {
|
|
|
- ex.erase ( ex.begin() + i );
|
|
|
- }
|
|
|
- }
|
|
|
- cerr << "Example size new " << ex.size() << endl;
|
|
|
- }
|
|
|
- cerr << "converting low-level features to high-level features finished" << endl;
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka::smoothHL ( Examples ex )
|
|
|
-{
|
|
|
-
|
|
|
- if ( !smoothhl )
|
|
|
- return;
|
|
|
- assert ( ex.size() > 1 );
|
|
|
-
|
|
|
- long long int minx = numeric_limits<long long int>::max();
|
|
|
- long long int miny = numeric_limits<long long int>::max();
|
|
|
- long long int maxx = -numeric_limits<long long int>::max();
|
|
|
- long long int maxy = -numeric_limits<long long int>::max();
|
|
|
- long long int distx = numeric_limits<long long int>::max();
|
|
|
- long long int disty = numeric_limits<long long int>::max();
|
|
|
-
|
|
|
- set<double> scales;
|
|
|
- for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
- {
|
|
|
- scales.insert ( ex[i].second.scale );
|
|
|
- }
|
|
|
-
|
|
|
- map<double, int> scalepos;
|
|
|
- int it = 0;
|
|
|
-
|
|
|
- for ( set<double>::const_iterator iter = scales.begin(); iter != scales.end(); ++iter, ++it )
|
|
|
- {
|
|
|
- scalepos.insert ( make_pair ( *iter, it ) );
|
|
|
- }
|
|
|
-
|
|
|
- for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
- {
|
|
|
- if ( minx < numeric_limits<int>::max() && ex[i].second.x - minx > 0 )
|
|
|
- distx = std::min ( distx, ex[i].second.x - minx );
|
|
|
- if ( miny < numeric_limits<int>::max() && ex[i].second.y - miny > 0 )
|
|
|
- disty = std::min ( disty, ex[i].second.y - miny );
|
|
|
- minx = std::min ( ( long long int ) ex[i].second.x, minx );
|
|
|
- maxx = std::max ( ( long long int ) ex[i].second.x, maxx );
|
|
|
- miny = std::min ( ( long long int ) ex[i].second.y, miny );
|
|
|
- maxy = std::max ( ( long long int ) ex[i].second.y, maxy );
|
|
|
- }
|
|
|
-
|
|
|
- distx = abs ( distx );
|
|
|
-
|
|
|
- int xsize = ( maxx - minx ) / distx + 1;
|
|
|
- int ysize = ( maxy - miny ) / disty + 1;
|
|
|
- double valx = ( ( double ) xsize - 1 ) / ( double ) ( maxx - minx );
|
|
|
- double valy = ( ( double ) ysize - 1 ) / ( double ) ( maxy - miny );
|
|
|
-
|
|
|
- //double sigma = smoothfactor;
|
|
|
- double sigma = std::max ( xsize, ysize ) * smoothfactor;
|
|
|
- //double sigma = 0.2;
|
|
|
- cout << "sigma1: " << sigma << endl;
|
|
|
-
|
|
|
- vector<NICE::FloatImage> imgv;
|
|
|
- vector<NICE::FloatImage> gaussImgv;
|
|
|
- for ( int i = 0; i < ( int ) scalepos.size(); i++ )
|
|
|
- {
|
|
|
- NICE::FloatImage img ( xsize, ysize );
|
|
|
- NICE::FloatImage gaussImg ( xsize, ysize );
|
|
|
- imgv.push_back ( img );
|
|
|
- gaussImgv.push_back ( gaussImg );
|
|
|
- }
|
|
|
-
|
|
|
- for ( int d = 0; d < ex[0].second.svec->getDim(); d++ )
|
|
|
- {
|
|
|
- //TODO: max und min dynamisches bestimmen
|
|
|
-
|
|
|
- for ( int i = 0; i < ( int ) scalepos.size(); i++ )
|
|
|
- {
|
|
|
- imgv[i].set ( 0.0 );
|
|
|
- gaussImgv[i].set ( 0.0 );
|
|
|
- }
|
|
|
-
|
|
|
- for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
- {
|
|
|
- int xpos = ( ex[i].second.x - minx ) * valx;
|
|
|
- int ypos = ( ex[i].second.y - miny ) * valy;
|
|
|
-
|
|
|
- double val = ex[i].second.svec->get ( d );
|
|
|
- imgv[scalepos[ex[i].second.scale]].setPixel ( xpos, ypos, val );
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- for(int y = 0; y < ysize; y++)
|
|
|
- {
|
|
|
- for(int x = 0; x < xsize; x++)
|
|
|
- {
|
|
|
- // refactor-nice.pl: check this substitution
|
|
|
- // old: double val = GetValD(img,x,y);
|
|
|
- double val = img.getPixel(x,y);
|
|
|
- double c = 0.0;
|
|
|
- if(val == 0.0)
|
|
|
- {
|
|
|
- if(x > 0)
|
|
|
- {
|
|
|
- // refactor-nice.pl: check this substitution
|
|
|
- // old: val+=GetValD(img,x-1,y);
|
|
|
- val+=img.getPixel(x-1,y);
|
|
|
- c+=1.0;
|
|
|
- }
|
|
|
- if(y > 0)
|
|
|
- {
|
|
|
- // refactor-nice.pl: check this substitution
|
|
|
- // old: val+=GetValD(img,x,y-1);
|
|
|
- val+=img.getPixel(x,y-1);
|
|
|
- c+=1.0;
|
|
|
- }
|
|
|
- if(x < xsize-1)
|
|
|
- {
|
|
|
- // refactor-nice.pl: check this substitution
|
|
|
- // old: val+=GetValD(img,x+1,y);
|
|
|
- val+=img.getPixel(x+1,y);
|
|
|
- c+=1.0;
|
|
|
- }
|
|
|
- if(y < ysize-1)
|
|
|
- {
|
|
|
- // refactor-nice.pl: check this substitution
|
|
|
- // old: val+=GetValD(img,x,y+1);
|
|
|
- val+=img.getPixel(x,y+1);
|
|
|
- c+=1.0;
|
|
|
- }
|
|
|
- // refactor-nice.pl: check this substitution
|
|
|
- // old: PutValD(img,x,y,val/c);
|
|
|
- img.setPixel(x,y,val/c);
|
|
|
- }
|
|
|
- }
|
|
|
- }*/
|
|
|
-
|
|
|
- for ( int i = 0; i < ( int ) imgv.size(); i++ )
|
|
|
- filterGaussSigmaApproximate<float, float, float> ( imgv[i], sigma, &gaussImgv[i] );
|
|
|
-
|
|
|
- for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
- {
|
|
|
- int xpos = ( ex[i].second.x - minx ) * valx;
|
|
|
- int ypos = ( ex[i].second.y - miny ) * valy;
|
|
|
- // refactor-nice.pl: check this substitution
|
|
|
- // old: double val = GetValD ( gaussImgv[scalepos[ex[i].second.scale]], xpos, ypos );
|
|
|
- double val = gaussImgv[scalepos[ex[i].second.scale]].getPixel ( xpos, ypos );
|
|
|
-
|
|
|
- if ( fabs ( val ) < 1e-7 )
|
|
|
- {
|
|
|
- if ( ex[i].second.svec->get ( d ) != 0.0 )
|
|
|
- {
|
|
|
- ex[i].second.svec->erase ( d );
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- ( *ex[i].second.svec ) [d] = val;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka::initializePCA ( Examples &ex )
|
|
|
-{
|
|
|
-#ifdef DEBUG
|
|
|
- cerr << "start computing pca" << endl;
|
|
|
-#endif
|
|
|
- std::string filename = cache + "/pca";
|
|
|
- FILE *value;
|
|
|
- value = fopen ( filename.c_str(), "r" );
|
|
|
-
|
|
|
- if ( value == NULL || calcpca )
|
|
|
- {
|
|
|
- srand ( time ( NULL ) );
|
|
|
-
|
|
|
- int featsize = ( int ) ex.size();
|
|
|
- int maxfeatures = dim * 10;
|
|
|
- int olddim = ex[0].second.vec->size();
|
|
|
-
|
|
|
- maxfeatures = std::min ( maxfeatures, featsize );
|
|
|
-
|
|
|
- NICE::Matrix features ( maxfeatures, olddim );
|
|
|
-
|
|
|
- for ( int i = 0; i < maxfeatures; i++ )
|
|
|
- {
|
|
|
- int k = rand() % featsize;
|
|
|
-
|
|
|
- int vsize = ( int ) ex[k].second.vec->size();
|
|
|
- for ( int j = 0; j < vsize; j++ )
|
|
|
- {
|
|
|
- features ( i, j ) = ( * ( ex[k].second.vec ) ) [j];
|
|
|
- }
|
|
|
- }
|
|
|
- pca.calculateBasis ( features, dim );
|
|
|
-
|
|
|
- if ( save_cache )
|
|
|
- pca.save ( filename );
|
|
|
-
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- cout << "readpca: " << filename << endl;
|
|
|
- pca.read ( filename );
|
|
|
- cout << "end" << endl;
|
|
|
- }
|
|
|
-#ifdef DEBUG
|
|
|
- cerr << "finished computing pca" << endl;
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka::doPCA ( Examples &ex )
|
|
|
-{
|
|
|
- cout << "converting features using pca starts" << endl;
|
|
|
-
|
|
|
- std::string savedir = cname = conf->gS ( "cache", "root", "/dev/null/" );
|
|
|
- std::string shortf = ex.filename;
|
|
|
- if ( string::npos != ex.filename.rfind ( "/" ) )
|
|
|
- shortf = ex.filename.substr ( ex.filename.rfind ( "/" ) );
|
|
|
- std::string filename = savedir + "/pcasave/" + shortf;
|
|
|
- std::string syscall = "mkdir " + savedir + "/pcasave";
|
|
|
- system ( syscall.c_str() );
|
|
|
- cout << "filename: " << filename << endl;
|
|
|
-
|
|
|
- if ( !FileMgt::fileExists ( filename ) || calcpca )
|
|
|
- {
|
|
|
- ofstream ofStream;
|
|
|
-
|
|
|
- //Opens the file binary
|
|
|
- ofStream.open ( filename.c_str(), fstream::out | fstream::binary );
|
|
|
-
|
|
|
- for ( int k = 0; k < ( int ) ex.size(); k++ )
|
|
|
- {
|
|
|
- NICE::Vector tmp = pca.getFeatureVector ( * ( ex[k].second.vec ), true );
|
|
|
- delete ex[k].second.vec;
|
|
|
- for ( int d = 0; d < ( int ) tmp.size(); d++ )
|
|
|
- ofStream.write ( ( char* ) &tmp[d], sizeof ( double ) );
|
|
|
- ex[k].second.vec = new NICE::Vector ( tmp );
|
|
|
- }
|
|
|
- ofStream.close();
|
|
|
- cout << endl;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- ifstream ifStream;
|
|
|
- ifStream.open ( filename.c_str(), std::fstream::in | std::fstream::binary );
|
|
|
- for ( int k = 0; k < ( int ) ex.size(); k++ )
|
|
|
- {
|
|
|
- NICE::Vector tmp = NICE::Vector ( dim );
|
|
|
- delete ex[k].second.vec;
|
|
|
- for ( int d = 0; d < dim; d++ )
|
|
|
- ifStream.read ( ( char* ) &tmp[d], sizeof ( double ) );
|
|
|
- ex[k].second.vec = new NICE::Vector ( tmp );
|
|
|
- }
|
|
|
-
|
|
|
- ifStream.close();
|
|
|
- }
|
|
|
- cout << "converting features using pca finished" << endl;
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka::train ( const MultiDataset *md )
|
|
|
-{
|
|
|
-
|
|
|
- /*die einzelnen Trainingsschritte
|
|
|
- 1. auf allen Trainingsbilder SIFT Merkmale an den Gitterpunkten bei allen Auflösungen bestimmen
|
|
|
- 2. PCA anwenden
|
|
|
- 3. aus diesen ein GMM erstellen
|
|
|
- 4. für jedes SIFT-Merkmal einen Vektor erstellen, der an der Stelle i die Wahrscheinlichkeit enthällt zur Verteilung i des GMM, Zur Zeit mit BoV-Alternative durch Moosman06 erledigt
|
|
|
- 5. diese Vektoren in einem diskriminitativen Klassifikator ( z.B. SLR oder Randomized Forests) zusammen mit ihrer Klassenzugehörigkeit anlernen
|
|
|
- */
|
|
|
-#ifdef DEBUG
|
|
|
- cerr << "SemSegCsurka:: training starts" << endl;
|
|
|
-#endif
|
|
|
-
|
|
|
- Examples examples;
|
|
|
- examples.filename = "training";
|
|
|
-
|
|
|
-
|
|
|
- // Welche Opponentsift Implementierung soll genutzt werden ?
|
|
|
- LocalFeatureRepresentation *cSIFT = NULL;
|
|
|
- LocalFeatureRepresentation *writeFeats = NULL;
|
|
|
- LocalFeatureRepresentation *readFeats = NULL;
|
|
|
- LocalFeatureRepresentation *getFeats = NULL;
|
|
|
-
|
|
|
- if ( opSiftImpl == "NICE" )
|
|
|
- {
|
|
|
- cSIFT = new LFonHSG ( conf, "HSGtrain" );
|
|
|
- }
|
|
|
- else if ( opSiftImpl == "VANDESANDE" )
|
|
|
- {
|
|
|
- // the used features
|
|
|
- cSIFT = new LFColorSande ( conf, "LFColorSandeTrain" );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- fthrow ( Exception, "feattype: %s not yet supported" << opSiftImpl );
|
|
|
- }
|
|
|
-
|
|
|
- getFeats = cSIFT;
|
|
|
-
|
|
|
- if ( writefeat )
|
|
|
- {
|
|
|
- // write the features to a file, if there isn't any to read
|
|
|
- writeFeats = new LFWriteCache ( conf, cSIFT );
|
|
|
- getFeats = writeFeats;
|
|
|
- }
|
|
|
-
|
|
|
- if ( readfeat )
|
|
|
- {
|
|
|
- // read the features from a file
|
|
|
- if ( writefeat )
|
|
|
- {
|
|
|
- readFeats = new LFReadCache ( conf, writeFeats, -1 );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- readFeats = new LFReadCache ( conf, cSIFT, -1 );
|
|
|
- }
|
|
|
- getFeats = readFeats;
|
|
|
- }
|
|
|
-
|
|
|
- // additional Colorfeatures
|
|
|
- LFColorWeijer lcw ( conf );
|
|
|
-
|
|
|
- int lfdimension = -1;
|
|
|
-
|
|
|
- const LabeledSet train = * ( *md ) ["train"];
|
|
|
- const LabeledSet *trainp = &train;
|
|
|
-
|
|
|
- ////////////////////////
|
|
|
- // Merkmale berechnen //
|
|
|
- ////////////////////////
|
|
|
-
|
|
|
- std::string forbidden_classes_s = conf->gS ( "analysis", "donttrain", "" );
|
|
|
- if ( forbidden_classes_s == "" )
|
|
|
- {
|
|
|
- forbidden_classes_s = conf->gS ( "analysis", "forbidden_classes", "" );
|
|
|
- }
|
|
|
- cn.getSelection ( forbidden_classes_s, forbidden_classes );
|
|
|
- cerr << "forbidden: " << forbidden_classes_s << endl;
|
|
|
-
|
|
|
- ProgressBar pb ( "Local Feature Extraction" );
|
|
|
- pb.show();
|
|
|
-
|
|
|
- int imgnb = 0;
|
|
|
-
|
|
|
- LOOP_ALL_S ( *trainp )
|
|
|
- {
|
|
|
- //EACH_S(classno, currentFile);
|
|
|
- EACH_INFO ( classno, info );
|
|
|
-
|
|
|
- pb.update ( trainp->count() );
|
|
|
-
|
|
|
- NICE::ColorImage img;
|
|
|
-
|
|
|
- std::string currentFile = info.img();
|
|
|
-
|
|
|
- CachedExample *ce = new CachedExample ( currentFile );
|
|
|
-
|
|
|
- const LocalizationResult *locResult = info.localization();
|
|
|
- if ( locResult->size() <= 0 )
|
|
|
- {
|
|
|
- fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
- currentFile.c_str() );
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
|
|
|
- currentFile.c_str() );
|
|
|
-
|
|
|
- int xsize, ysize;
|
|
|
- ce->getImageSize ( xsize, ysize );
|
|
|
-
|
|
|
- NICE::Image pixelLabels ( xsize, ysize );
|
|
|
- pixelLabels.set ( 0 );
|
|
|
- locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
-
|
|
|
- try {
|
|
|
- img = ColorImage ( currentFile );
|
|
|
- } catch ( Exception ) {
|
|
|
- cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- Globals::setCurrentImgFN ( currentFile );
|
|
|
-
|
|
|
- VVector features;
|
|
|
- VVector cfeatures;
|
|
|
- VVector positions;
|
|
|
-
|
|
|
- NICE::ColorImage cimg ( currentFile );
|
|
|
-
|
|
|
- getFeats->extractFeatures ( img, features, positions );
|
|
|
-
|
|
|
-#ifdef DEBUG_CSURK
|
|
|
- cout << "[log] SemSegCsruka::train -> " << currentFile << " an " << positions.size() << " Positionen wurden Features (Anz = " << features.size() << ") " << endl;
|
|
|
- cout << "mit einer Dimension von " << features[ 0].size() << " extrahiert." << endl;
|
|
|
-#endif
|
|
|
-
|
|
|
- if ( usecolorfeats )
|
|
|
- lcw.getDescriptors ( cimg, cfeatures, positions );
|
|
|
-
|
|
|
- int j = 0;
|
|
|
-
|
|
|
- for ( VVector::const_iterator i = features.begin();
|
|
|
- i != features.end();
|
|
|
- i++, j++ )
|
|
|
- {
|
|
|
- const NICE::Vector & x = *i;
|
|
|
- classno = pixelLabels.getPixel ( ( int ) positions[j][0], ( int ) positions[j][1] );
|
|
|
-
|
|
|
- if ( forbidden_classes.find ( classno ) != forbidden_classes.end() )
|
|
|
- continue;
|
|
|
-
|
|
|
- if ( lfdimension < 0 )
|
|
|
- lfdimension = ( int ) x.size();
|
|
|
- else
|
|
|
- assert ( lfdimension == ( int ) x.size() );
|
|
|
-
|
|
|
- NICE::Vector *v = new NICE::Vector ( x );
|
|
|
-
|
|
|
- if ( usecolorfeats && !usepca )
|
|
|
- v->append ( cfeatures[j] );
|
|
|
-
|
|
|
- Example example ( v );
|
|
|
- example.position = imgnb;
|
|
|
- examples.push_back (
|
|
|
- pair<int, Example> ( classno, example ) );
|
|
|
- }
|
|
|
- features.clear();
|
|
|
- positions.clear();
|
|
|
- delete ce;
|
|
|
- imgnb++;
|
|
|
- }
|
|
|
-
|
|
|
- pb.hide();
|
|
|
-
|
|
|
- //////////////////
|
|
|
- // PCA anwenden //
|
|
|
- //////////////////
|
|
|
-
|
|
|
- if ( usepca )
|
|
|
- {
|
|
|
- if ( !read_cache )
|
|
|
- {
|
|
|
- initializePCA ( examples );
|
|
|
- }
|
|
|
- doPCA ( examples );
|
|
|
- lfdimension = dim;
|
|
|
- }
|
|
|
-
|
|
|
- /////////////////////////////////////////////////////
|
|
|
- // Low-Level Features in High-Level transformieren //
|
|
|
- /////////////////////////////////////////////////////
|
|
|
-
|
|
|
- int hlfdimension = lfdimension;
|
|
|
-
|
|
|
- if ( norm )
|
|
|
- normalize ( examples );
|
|
|
-
|
|
|
- if ( usegmm )
|
|
|
- {
|
|
|
- if ( !usepca && !norm )
|
|
|
- normalize ( examples );
|
|
|
- g = new GMM ( conf, gaussians );
|
|
|
-
|
|
|
- if ( dogmm || !g->loadData ( cache + "/gmm" ) )
|
|
|
- {
|
|
|
- g->computeMixture ( examples );
|
|
|
- if ( save_cache )
|
|
|
- g->saveData ( cache + "/gmm" );
|
|
|
- }
|
|
|
-
|
|
|
- hlfdimension = gaussians;
|
|
|
-
|
|
|
- if ( usefisher )
|
|
|
- hlfdimension = gaussians * 2 * dim;
|
|
|
- }
|
|
|
-
|
|
|
- if ( usekmeans )
|
|
|
- {
|
|
|
- if ( !usepca || norm )
|
|
|
- normalize ( examples );
|
|
|
- k = new KMeansOnline ( gaussians );
|
|
|
-
|
|
|
- k->cluster ( examples );
|
|
|
-
|
|
|
- hlfdimension = gaussians;
|
|
|
- }
|
|
|
-
|
|
|
- if ( usekmeans || usegmm )
|
|
|
- {
|
|
|
- examples.clear();
|
|
|
- pb.reset ( "Local Feature Extraction" );
|
|
|
- lfdimension = -1;
|
|
|
- pb.update ( trainp->count() );
|
|
|
- LOOP_ALL_S ( *trainp )
|
|
|
- {
|
|
|
- EACH_INFO ( classno, info );
|
|
|
-
|
|
|
- pb.update ( trainp->count() );
|
|
|
-
|
|
|
- NICE::ColorImage img;
|
|
|
-
|
|
|
- std::string currentFile = info.img();
|
|
|
-
|
|
|
- CachedExample *ce = new CachedExample ( currentFile );
|
|
|
-
|
|
|
- const LocalizationResult *locResult = info.localization();
|
|
|
- if ( locResult->size() <= 0 )
|
|
|
- {
|
|
|
- fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
- currentFile.c_str() );
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
|
|
|
- currentFile.c_str() );
|
|
|
-
|
|
|
- int xsize, ysize;
|
|
|
- ce->getImageSize ( xsize, ysize );
|
|
|
-
|
|
|
- NICE::Image pixelLabels ( xsize, ysize );
|
|
|
- pixelLabels.set ( 0 );
|
|
|
- locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
-
|
|
|
- try {
|
|
|
- img = ColorImage ( currentFile );
|
|
|
- }
|
|
|
- catch ( Exception ) {
|
|
|
- cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- Globals::setCurrentImgFN ( currentFile );
|
|
|
-
|
|
|
- VVector features;
|
|
|
- VVector cfeatures;
|
|
|
- VVector positions;
|
|
|
-
|
|
|
- NICE::ColorImage cimg ( currentFile );
|
|
|
-
|
|
|
- getFeats->extractFeatures ( img, features, positions );
|
|
|
-
|
|
|
- if ( usecolorfeats )
|
|
|
- lcw.getDescriptors ( cimg, cfeatures, positions );
|
|
|
-
|
|
|
- int j = 0;
|
|
|
-
|
|
|
- Examples tmpex;
|
|
|
-
|
|
|
- for ( VVector::const_iterator i = features.begin();
|
|
|
- i != features.end();
|
|
|
- i++, j++ )
|
|
|
- {
|
|
|
-
|
|
|
- const NICE::Vector & x = *i;
|
|
|
-
|
|
|
- classno = pixelLabels.getPixel ( ( int ) positions[j][0], ( int ) positions[j][1] );
|
|
|
-
|
|
|
- if ( forbidden_classes.find ( classno ) != forbidden_classes.end() )
|
|
|
- continue;
|
|
|
-
|
|
|
- if ( lfdimension < 0 )
|
|
|
- lfdimension = ( int ) x.size();
|
|
|
- else
|
|
|
- assert ( lfdimension == ( int ) x.size() );
|
|
|
-
|
|
|
- NICE::Vector *v = new NICE::Vector ( x );
|
|
|
- if ( usecolorfeats )
|
|
|
- v->append ( cfeatures[j] );
|
|
|
-
|
|
|
- Example example ( v );
|
|
|
- example.position = imgnb;
|
|
|
- example.x = ( int ) positions[j][0];
|
|
|
- example.y = ( int ) positions[j][1];
|
|
|
- example.scale = positions[j][2];
|
|
|
-
|
|
|
- tmpex.push_back ( pair<int, Example> ( classno, example ) );
|
|
|
- }
|
|
|
- tmpex.filename = currentFile;
|
|
|
- if ( usepca )
|
|
|
- {
|
|
|
- doPCA ( tmpex );
|
|
|
- }
|
|
|
-
|
|
|
- convertLowToHigh ( tmpex, anteil );
|
|
|
-
|
|
|
- smoothHL ( tmpex );
|
|
|
-
|
|
|
- for ( int i = 0; i < ( int ) tmpex.size(); i++ )
|
|
|
- {
|
|
|
- examples.push_back ( pair<int, Example> ( tmpex[i].first, tmpex[i].second ) );
|
|
|
- }
|
|
|
-
|
|
|
- tmpex.clear();
|
|
|
-
|
|
|
- features.clear();
|
|
|
- positions.clear();
|
|
|
- delete ce;
|
|
|
- imgnb++;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- pb.hide();
|
|
|
- }
|
|
|
- ////////////////////////////
|
|
|
- // Klassifikator anlernen //
|
|
|
- ////////////////////////////
|
|
|
- FeaturePool fp;
|
|
|
-
|
|
|
- Feature *f;
|
|
|
-
|
|
|
- if ( usegmm || usekmeans )
|
|
|
- f = new SparseVectorFeature ( hlfdimension );
|
|
|
- else
|
|
|
- f = new VectorFeature ( hlfdimension );
|
|
|
-
|
|
|
- f->explode ( fp );
|
|
|
- delete f;
|
|
|
-
|
|
|
- if ( usecolorfeats && ! ( usekmeans || usegmm ) )
|
|
|
- {
|
|
|
- int dimension = hlfdimension + 11;
|
|
|
- for ( int i = hlfdimension ; i < dimension ; i++ )
|
|
|
- {
|
|
|
- VectorFeature *f = new VectorFeature ( dimension );
|
|
|
- f->feature_index = i;
|
|
|
- fp.addFeature ( f, 1.0 / dimension );
|
|
|
- }
|
|
|
- }
|
|
|
- /*
|
|
|
- cout << "train classifier" << endl;
|
|
|
- fp.store(cout);
|
|
|
- getchar();
|
|
|
- for(int z = 0; z < examples.size(); z++)
|
|
|
- {
|
|
|
- cout << "examples.size() " << examples.size() << endl;
|
|
|
- cout << "class: " << examples[z].first << endl;
|
|
|
- cout << *examples[z].second.vec << endl;
|
|
|
- getchar();
|
|
|
- }*/
|
|
|
-
|
|
|
- if ( classifier != NULL )
|
|
|
- classifier->train ( fp, examples );
|
|
|
- else
|
|
|
- {
|
|
|
- LabeledSetVector lvec;
|
|
|
- convertExamplesToLSet ( examples, lvec );
|
|
|
- vclassifier->teach ( lvec );
|
|
|
- if ( usegmm )
|
|
|
- convertLSetToSparseExamples ( examples, lvec );
|
|
|
- else
|
|
|
- convertLSetToExamples ( examples, lvec );
|
|
|
- vclassifier->finishTeaching();
|
|
|
- }
|
|
|
-
|
|
|
- fp.destroy();
|
|
|
-
|
|
|
- if ( save_cache )
|
|
|
- {
|
|
|
- if ( classifier != NULL )
|
|
|
- classifier->save ( cache + "/fpcrf.data" );
|
|
|
- else
|
|
|
- vclassifier->save ( cache + "/veccl.data" );
|
|
|
- }
|
|
|
-
|
|
|
- ////////////
|
|
|
- //clean up//
|
|
|
- ////////////
|
|
|
- for ( int i = 0; i < ( int ) examples.size(); i++ )
|
|
|
- {
|
|
|
- examples[i].second.clean();
|
|
|
- }
|
|
|
- examples.clear();
|
|
|
-
|
|
|
- if ( cSIFT != NULL )
|
|
|
- delete cSIFT;
|
|
|
- if ( writeFeats != NULL )
|
|
|
- delete writeFeats;
|
|
|
- if ( readFeats != NULL )
|
|
|
- delete readFeats;
|
|
|
- getFeats = NULL;
|
|
|
-
|
|
|
- trainpostprocess ( md );
|
|
|
-
|
|
|
- cerr << "SemSeg training finished" << endl;
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka::trainpostprocess ( const MultiDataset *md )
|
|
|
-{
|
|
|
- cout << "start postprocess" << endl;
|
|
|
- ////////////////////////////
|
|
|
- // Postprocess trainieren //
|
|
|
- ////////////////////////////
|
|
|
- const LabeledSet train = * ( *md ) ["train"];
|
|
|
- const LabeledSet *trainp = &train;
|
|
|
-
|
|
|
- if ( userellocprior || srg != NULL || gcopt != NULL )
|
|
|
- {
|
|
|
- clog << "[log] SemSegCsurka::trainpostprocess: if ( userellocprior || srg != NULL || gcopt !=NULL )" << endl;
|
|
|
- if ( userellocprior )
|
|
|
- relloc->setClassNo ( cn.numClasses() );
|
|
|
-
|
|
|
- if ( gcopt != NULL )
|
|
|
- {
|
|
|
- gcopt->setClassNo ( cn.numClasses() );
|
|
|
- }
|
|
|
-
|
|
|
- ProgressBar pb ( "learn relative location prior maps" );
|
|
|
- pb.show();
|
|
|
- LOOP_ALL_S ( *trainp ) // für alle Bilder den ersten Klassifikationsschritt durchführen um den zweiten Klassifikator anzutrainieren
|
|
|
- {
|
|
|
- EACH_INFO ( classno, info );
|
|
|
-
|
|
|
- pb.update ( trainp->count() );
|
|
|
-
|
|
|
- NICE::ColorImage img;
|
|
|
-
|
|
|
- std::string currentFile = info.img();
|
|
|
- Globals::setCurrentImgFN ( currentFile );
|
|
|
- CachedExample *ce = new CachedExample ( currentFile );
|
|
|
-
|
|
|
- const LocalizationResult *locResult = info.localization();
|
|
|
- if ( locResult->size() <= 0 )
|
|
|
- {
|
|
|
- fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
- currentFile.c_str() );
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
|
|
|
- currentFile.c_str() );
|
|
|
-
|
|
|
- int xsize, ysize;
|
|
|
- ce->getImageSize ( xsize, ysize );
|
|
|
-
|
|
|
- NICE::Image pixelLabels ( xsize, ysize );
|
|
|
- pixelLabels.set ( 0 );
|
|
|
- locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
-
|
|
|
- try {
|
|
|
- img = ColorImage ( currentFile );
|
|
|
- }
|
|
|
- catch ( Exception )
|
|
|
- {
|
|
|
- cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- //Regionen ermitteln
|
|
|
- NICE::Matrix mask;
|
|
|
-
|
|
|
- int regionsize = seg->segRegions ( img, mask );
|
|
|
-#ifdef DEBUG_CSURK
|
|
|
- Image overlay ( img.width(), img.height() );
|
|
|
-
|
|
|
- double maxval = -numeric_limits<double>::max();
|
|
|
-
|
|
|
- for ( int y = 0; y < img.height(); y++ )
|
|
|
- {
|
|
|
- for ( int x = 0; x < img.width(); x++ )
|
|
|
- {
|
|
|
- int val = ( ( int ) mask ( x, y ) + 1 ) % 256;
|
|
|
- overlay.setPixel ( x, y, val );
|
|
|
- maxval = std::max ( mask ( x, y ), maxval );
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- cout << maxval << " different regions found" << endl;
|
|
|
-
|
|
|
- NICE::showImageOverlay ( img, overlay, "Segmentation Result" );
|
|
|
-#endif
|
|
|
-
|
|
|
- Examples regions;
|
|
|
-
|
|
|
- vector<vector<int> > hists;
|
|
|
-
|
|
|
- for ( int i = 0; i < regionsize; i++ )
|
|
|
- {
|
|
|
- Example tmp;
|
|
|
- regions.push_back ( pair<int, Example> ( 0, tmp ) );
|
|
|
- vector<int> hist ( cn.numClasses(), 0 );
|
|
|
- hists.push_back ( hist );
|
|
|
- }
|
|
|
-
|
|
|
- for ( int x = 0; x < xsize; x++ )
|
|
|
- {
|
|
|
- for ( int y = 0; y < ysize; y++ )
|
|
|
- {
|
|
|
- int numb = mask ( x, y );
|
|
|
- regions[numb].second.x += x;
|
|
|
- regions[numb].second.y += y;
|
|
|
- regions[numb].second.weight += 1.0;
|
|
|
- hists[numb][pixelLabels.getPixel ( x,y ) ]++;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- for ( int i = 0; i < regionsize; i++ )
|
|
|
- {
|
|
|
- regions[i].second.x /= ( int ) regions[i].second.weight;
|
|
|
- regions[i].second.y /= ( int ) regions[i].second.weight;
|
|
|
-
|
|
|
- int maxval = -numeric_limits<int>::max();
|
|
|
- int maxpos = -1;
|
|
|
- int secondpos = -1;
|
|
|
- for ( int k = 0; k < ( int ) hists[i].size(); k++ )
|
|
|
- {
|
|
|
- if ( maxval < hists[i][k] )
|
|
|
- {
|
|
|
- maxval = hists[i][k];
|
|
|
- secondpos = maxpos;
|
|
|
- maxpos = k;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if ( cn.text ( maxpos ) == "various" )
|
|
|
- regions[i].first = secondpos;
|
|
|
- else
|
|
|
- regions[i].first = maxpos;
|
|
|
-
|
|
|
- }
|
|
|
- if ( userellocprior )
|
|
|
- relloc->trainPriorsMaps ( regions, xsize, ysize );
|
|
|
-
|
|
|
- if ( srg != NULL )
|
|
|
- srg->trainShape ( regions, mask );
|
|
|
-
|
|
|
- if ( gcopt != NULL )
|
|
|
- gcopt->trainImage ( regions, mask );
|
|
|
-
|
|
|
- delete ce;
|
|
|
-
|
|
|
- }
|
|
|
- pb.hide();
|
|
|
- if ( userellocprior )
|
|
|
- relloc->finishPriorsMaps ( cn );
|
|
|
-
|
|
|
- if ( srg != NULL )
|
|
|
- srg->finishShape ( cn );
|
|
|
-
|
|
|
- if ( gcopt != NULL )
|
|
|
- gcopt->finishPP ( cn );
|
|
|
- }
|
|
|
- if ( userellocprior )
|
|
|
- {
|
|
|
- clog << "[log] SemSegCsurka::trainpostprocess: if ( userellocprior )" << endl;
|
|
|
- ProgressBar pb ( "learn relative location classifier" );
|
|
|
- pb.show();
|
|
|
-
|
|
|
- int nummer = 0;
|
|
|
- LOOP_ALL_S ( *trainp ) // für alle Bilder den ersten Klassifikationsschritt durchführen um den zweiten Klassifikator anzutrainieren
|
|
|
- {
|
|
|
- //EACH_S(classno, currentFile);
|
|
|
- EACH_INFO ( classno, info );
|
|
|
- nummer++;
|
|
|
- pb.update ( trainp->count() );
|
|
|
-
|
|
|
- NICE::Image img;
|
|
|
- std::string currentFile = info.img();
|
|
|
-
|
|
|
- CachedExample *ce = new CachedExample ( currentFile );
|
|
|
-
|
|
|
- const LocalizationResult *locResult = info.localization();
|
|
|
- if ( locResult->size() <= 0 )
|
|
|
- {
|
|
|
- fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
- currentFile.c_str() );
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n",
|
|
|
- currentFile.c_str() );
|
|
|
-
|
|
|
- int xsize, ysize;
|
|
|
- ce->getImageSize ( xsize, ysize );
|
|
|
-
|
|
|
- NICE::Image pixelLabels ( xsize, ysize );
|
|
|
- pixelLabels.set ( 0 );
|
|
|
- locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
-
|
|
|
- try {
|
|
|
- img = Preprocess::ReadImgAdv ( currentFile.c_str() );
|
|
|
- }
|
|
|
- catch ( Exception )
|
|
|
- {
|
|
|
- cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
|
|
|
- continue;
|
|
|
- }
|
|
|
- Globals::setCurrentImgFN ( currentFile );
|
|
|
-
|
|
|
- NICE::Image segresult;
|
|
|
-
|
|
|
- NICE::MultiChannelImageT<double> probabilities ( xsize, ysize, classno );
|
|
|
-
|
|
|
- Examples regions;
|
|
|
-
|
|
|
- NICE::Matrix mask;
|
|
|
-
|
|
|
- if ( savesteps )
|
|
|
- {
|
|
|
- std::ostringstream s1;
|
|
|
- s1 << cache << "/rlpsave/" << nummer;
|
|
|
-
|
|
|
- std::string filename = s1.str();
|
|
|
- s1 << ".probs";
|
|
|
-
|
|
|
- std::string fn2 = s1.str();
|
|
|
-
|
|
|
- FILE *file;
|
|
|
- file = fopen ( filename.c_str(), "r" );
|
|
|
-
|
|
|
- if ( file == NULL )
|
|
|
- {
|
|
|
- //berechnen
|
|
|
- classifyregions ( ce, segresult, probabilities, regions, mask );
|
|
|
- //schreiben
|
|
|
- ofstream fout ( filename.c_str(), ios::app );
|
|
|
- fout << regions.size() << endl;
|
|
|
- for ( int i = 0; i < ( int ) regions.size(); i++ )
|
|
|
- {
|
|
|
- regions[i].second.store ( fout );
|
|
|
- fout << regions[i].first << endl;
|
|
|
- }
|
|
|
- fout.close();
|
|
|
- probabilities.store ( fn2 );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- //lesen
|
|
|
- ifstream fin ( filename.c_str() );
|
|
|
- int size;
|
|
|
- fin >> size;
|
|
|
-
|
|
|
- for ( int i = 0; i < size; i++ )
|
|
|
- {
|
|
|
- Example ex;
|
|
|
- ex.restore ( fin );
|
|
|
- int tmp;
|
|
|
- fin >> tmp;
|
|
|
- regions.push_back ( pair<int, Example> ( tmp, ex ) );
|
|
|
- }
|
|
|
-
|
|
|
- fin.close();
|
|
|
-
|
|
|
- probabilities.restore ( fn2 );
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- classifyregions ( ce, segresult, probabilities, regions, mask );
|
|
|
- }
|
|
|
-
|
|
|
- relloc->trainClassifier ( regions, probabilities );
|
|
|
-
|
|
|
- delete ce;
|
|
|
-
|
|
|
- }
|
|
|
- relloc->finishClassifier();
|
|
|
- pb.hide();
|
|
|
-
|
|
|
- relloc->save ( cache + "/rlp" );
|
|
|
- }
|
|
|
- cout << "finished postprocess" << endl;
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka::classifyregions ( CachedExample *ce, NICE::Image & segresult, NICE::MultiChannelImageT<double> & probabilities, Examples &Regionen, NICE::Matrix & mask )
|
|
|
-{
|
|
|
- /* die einzelnen Testschritte:
|
|
|
- 1.x auf dem Testbild alle SIFT Merkmale an den Gitterpunkten bei allen Auflösungen bestimmen
|
|
|
- 2.x für jedes SIFT-Merkmal einen Vektor erstellen, der an der Stelle i die Wahrscheinlichkeit enthällt zur Verteilung i des GMM
|
|
|
- 3.x diese Vektoren klassifizieren, so dass für jede Klasse die Wahrscheinlichkeit gespeichert wird
|
|
|
- 4.x für jeden Pixel die Wahrscheinlichkeiten mitteln aus allen Patches, in denen der Pixel vorkommt
|
|
|
- 5.x das Originalbild in homogene Bereiche segmentieren
|
|
|
- 6.x die homogenen Bereiche bekommen die gemittelten Wahrscheinlichkeiten ihrer Pixel
|
|
|
- 7. (einzelne Klassen mit einem globalen Klassifikator ausschließen)
|
|
|
- 8.x jeder Pixel bekommt die Klasse seiner Region zugeordnet
|
|
|
- */
|
|
|
-
|
|
|
- clog << "[log] SemSegCsruka::classifyregions" << endl;
|
|
|
- int xsize, ysize;
|
|
|
-
|
|
|
- ce->getImageSize ( xsize, ysize );
|
|
|
-
|
|
|
- probabilities.reInit ( xsize, ysize, classNames->getMaxClassno() + 1 );
|
|
|
- clog << "[log] SemSegCsruka::classifyregions: probabilities.channels() = " << probabilities.channels() << endl;
|
|
|
-
|
|
|
- segresult.resize ( xsize, ysize );
|
|
|
-
|
|
|
- Examples pce;
|
|
|
-
|
|
|
- // Welche Opponentsift Implementierung soll genutzt werden ?
|
|
|
- LocalFeatureRepresentation *cSIFT = NULL;
|
|
|
- LocalFeatureRepresentation *writeFeats = NULL;
|
|
|
- LocalFeatureRepresentation *readFeats = NULL;
|
|
|
- LocalFeatureRepresentation *getFeats = NULL;
|
|
|
-
|
|
|
-
|
|
|
- if ( opSiftImpl == "NICE" )
|
|
|
- {
|
|
|
- cSIFT = new LFonHSG ( conf, "HSGtest" );
|
|
|
- }
|
|
|
- else if ( opSiftImpl == "VANDESANDE" )
|
|
|
- {
|
|
|
- // the used features
|
|
|
- cSIFT = new LFColorSande ( conf, "LFColorSandeTrain" );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- fthrow ( Exception, "feattype: %s not yet supported" << opSiftImpl );
|
|
|
- }
|
|
|
-
|
|
|
- getFeats = cSIFT;
|
|
|
-
|
|
|
- if ( writefeat )
|
|
|
- {
|
|
|
- // write the features to a file, if there isn't any to read
|
|
|
- writeFeats = new LFWriteCache ( conf, cSIFT );
|
|
|
- getFeats = writeFeats;
|
|
|
- }
|
|
|
-
|
|
|
- if ( readfeat )
|
|
|
- {
|
|
|
- // read the features from a file
|
|
|
- if ( writefeat )
|
|
|
- {
|
|
|
- readFeats = new LFReadCache ( conf, writeFeats, -1 );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- readFeats = new LFReadCache ( conf, cSIFT, -1 );
|
|
|
- }
|
|
|
- getFeats = readFeats;
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // additional Colorfeatures
|
|
|
- LFColorWeijer lcw ( conf );
|
|
|
-
|
|
|
- NICE::ColorImage img;
|
|
|
-
|
|
|
- std::string currentFile = Globals::getCurrentImgFN();
|
|
|
-
|
|
|
- try
|
|
|
- {
|
|
|
- img = ColorImage ( currentFile );
|
|
|
- }
|
|
|
- catch ( Exception )
|
|
|
- {
|
|
|
- cerr << "SemSegCsurka: error opening image file <" << currentFile << ">" << endl;
|
|
|
- }
|
|
|
-
|
|
|
- VVector features;
|
|
|
- VVector cfeatures;
|
|
|
- VVector positions;
|
|
|
-
|
|
|
- getFeats->extractFeatures ( img, features, positions );
|
|
|
-
|
|
|
- if ( usecolorfeats )
|
|
|
- lcw.getDescriptors ( img, cfeatures, positions );
|
|
|
-
|
|
|
- set<double> scales;
|
|
|
-
|
|
|
- int j = 0;
|
|
|
- int lfdimension = -1;
|
|
|
- for ( VVector::const_iterator i = features.begin();
|
|
|
- i != features.end();
|
|
|
- i++, j++ )
|
|
|
- {
|
|
|
- const NICE::Vector & x = *i;
|
|
|
-
|
|
|
- if ( lfdimension < 0 ) lfdimension = ( int ) x.size();
|
|
|
- else assert ( lfdimension == ( int ) x.size() );
|
|
|
-
|
|
|
- NICE::Vector *v = new NICE::Vector ( x );
|
|
|
-
|
|
|
- if ( usecolorfeats )
|
|
|
- v->append ( cfeatures[j] );
|
|
|
-
|
|
|
- Example tmp = Example ( v );
|
|
|
- tmp.x = ( int ) positions[j][0];
|
|
|
- tmp.y = ( int ) positions[j][1];
|
|
|
- tmp.width = ( int ) ( 16.0 * positions[j][2] );
|
|
|
- tmp.height = tmp.width;
|
|
|
- tmp.scale = positions[j][2];
|
|
|
- scales.insert ( positions[j][2] );
|
|
|
- pce.push_back ( pair<int, Example> ( 0, tmp ) );
|
|
|
- }
|
|
|
-
|
|
|
- //////////////////
|
|
|
- // PCA anwenden //
|
|
|
- //////////////////
|
|
|
- pce.filename = currentFile;
|
|
|
- if ( usepca )
|
|
|
- {
|
|
|
- doPCA ( pce );
|
|
|
- lfdimension = dim;
|
|
|
- }
|
|
|
-
|
|
|
- //////////////////
|
|
|
- // BoV anwenden //
|
|
|
- //////////////////
|
|
|
- if ( norm )
|
|
|
- normalize ( pce );
|
|
|
- if ( usegmm || usekmeans )
|
|
|
- {
|
|
|
- if ( !usepca && !norm )
|
|
|
- normalize ( pce );
|
|
|
- convertLowToHigh ( pce );
|
|
|
- smoothHL ( pce );
|
|
|
- lfdimension = gaussians;
|
|
|
- }
|
|
|
-
|
|
|
- /////////////////////////////////////////
|
|
|
- // Wahrscheinlichkeitskarten erstellen //
|
|
|
- /////////////////////////////////////////
|
|
|
- int klassen = probabilities.channels();
|
|
|
- NICE::MultiChannelImageT<double> preMap ( xsize, ysize, klassen*scales.size() );
|
|
|
-
|
|
|
- // initialisieren
|
|
|
- for ( int y = 0 ; y < ysize ; y++ )
|
|
|
- for ( int x = 0 ; x < xsize ; x++ )
|
|
|
- {
|
|
|
- // alles zum Hintergrund machen
|
|
|
- segresult.setPixel ( x, y, 0 );
|
|
|
- // Die Wahrscheinlichkeitsmaps auf 0 initialisieren
|
|
|
- for ( int i = 0 ; i < ( int ) probabilities.channels(); i++ )
|
|
|
- {
|
|
|
- probabilities[i](x,y) = 0.0;
|
|
|
- }
|
|
|
- for ( int j = 0; j < ( int ) preMap.channels(); j++ )
|
|
|
- {
|
|
|
- preMap[j](x,y) = 0.0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Die Wahrscheinlichkeitsmaps mit den einzelnen Wahrscheinlichkeiten je Skalierung füllen
|
|
|
- int scalesize = scales.size();
|
|
|
-
|
|
|
- // Globale Häufigkeiten akkumulieren
|
|
|
- FullVector fV ( ( int ) probabilities.channels() );
|
|
|
-
|
|
|
- for ( int i = 0; i < fV.size(); i++ )
|
|
|
- fV[i] = 0.0;
|
|
|
-
|
|
|
- // read allowed classes
|
|
|
-
|
|
|
- string cndir = conf->gS ( "SemSegCsurka", "cndir", "" );
|
|
|
- int classes = ( int ) probabilities.channels();
|
|
|
- vector<int> useclass ( classes, 1 );
|
|
|
-
|
|
|
- std::vector< std::string > list;
|
|
|
- StringTools::split ( currentFile, '/', list );
|
|
|
-
|
|
|
- string orgname = list.back();
|
|
|
- if ( cndir != "" )
|
|
|
- {
|
|
|
- useclass = vector<int> ( classes, 0 );
|
|
|
- ifstream infile ( ( cndir + "/" + orgname + ".dat" ).c_str() );
|
|
|
- while ( !infile.eof() && infile.good() )
|
|
|
- {
|
|
|
- int tmp;
|
|
|
- infile >> tmp;
|
|
|
- if ( tmp >= 0 && tmp < classes )
|
|
|
- {
|
|
|
- useclass[tmp] = 1;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#ifdef UNCERTAINTY
|
|
|
- vector<FloatImage> uncert;
|
|
|
- for(int s = 0; s < scalesize; s++)
|
|
|
- {
|
|
|
- uncert.push_back(FloatImage(xsize, ysize));
|
|
|
- uncert[s].set(0.0);
|
|
|
- }
|
|
|
- ColorImage imgrgb ( xsize, ysize );
|
|
|
- std::string s;
|
|
|
- std::stringstream out;
|
|
|
- std::vector< std::string > list2;
|
|
|
- StringTools::split ( Globals::getCurrentImgFN (), '/', list2 );
|
|
|
- out << "uncertainty/" << list2.back();
|
|
|
-
|
|
|
- double maxu = -numeric_limits<double>::max();
|
|
|
- double minu = numeric_limits<double>::max();
|
|
|
-#endif
|
|
|
-
|
|
|
- if ( classifier != NULL )
|
|
|
- {
|
|
|
- clog << "[log] SemSegCsruka::classifyregions: Wahrscheinlichkeitskarten erstellen: classifier != NULL" << endl;
|
|
|
-#pragma omp parallel for
|
|
|
- for ( int s = 0; s < scalesize; s++ )
|
|
|
- {
|
|
|
-#pragma omp parallel for
|
|
|
- for ( int i = s; i < ( int ) pce.size(); i += scalesize )
|
|
|
- {
|
|
|
- ClassificationResult r = classifier->classify ( pce[i].second );
|
|
|
-
|
|
|
- for ( int j = 0 ; j < fV.size(); j++ )
|
|
|
- {
|
|
|
- if ( useclass[j] == 0 )
|
|
|
- continue;
|
|
|
-
|
|
|
- fV[j] += r.scores[j];
|
|
|
- preMap.set ( pce[i].second.x, pce[i].second.y, r.scores[j], j + s*klassen );
|
|
|
- }
|
|
|
-
|
|
|
- /*if(r.uncertainty < 0.0)
|
|
|
- {
|
|
|
- cerr << "uncertainty: " << r.uncertainty << endl;
|
|
|
- pce[i].second.svec->store(cerr);
|
|
|
- cerr << endl;
|
|
|
- exit(-1);
|
|
|
- }*/
|
|
|
-#ifdef UNCERTAINTY
|
|
|
- uncert[s] ( pce[i].second.x, pce[i].second.y ) = r.uncertainty;
|
|
|
- maxu = std::max ( r.uncertainty, maxu );
|
|
|
- minu = std::min ( r.uncertainty, minu );
|
|
|
-#endif
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
-//#pragma omp parallel for
|
|
|
- for ( int s = 0; s < scalesize; s++ )
|
|
|
- {
|
|
|
-//#pragma omp parallel for
|
|
|
- for ( int i = s; i < ( int ) pce.size(); i += scalesize )
|
|
|
- {
|
|
|
- ClassificationResult r = vclassifier->classify ( * ( pce[i].second.vec ) );
|
|
|
- for ( int j = 0 ; j < ( int ) fV.size(); j++ )
|
|
|
- {
|
|
|
- if ( useclass[j] == 0 )
|
|
|
- continue;
|
|
|
- fV[j] += r.scores[j];
|
|
|
- preMap.set ( pce[i].second.x, pce[i].second.y, r.scores[j], j + s*klassen );
|
|
|
- }
|
|
|
-#ifdef UNCERTAINTY
|
|
|
- uncert[s] ( pce[i].second.x, pce[i].second.y ) = r.uncertainty;
|
|
|
- maxu = std::max ( r.uncertainty, maxu );
|
|
|
- minu = std::min ( r.uncertainty, minu );
|
|
|
-#endif
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#ifdef UNCERTAINTY
|
|
|
- cout << "maxvdirect: " << maxu << " minvdirect: " << minu << endl;
|
|
|
- FloatImage gaussUncert ( xsize, ysize );
|
|
|
- ICETools::convertToRGB ( uncert[0], imgrgb );
|
|
|
- imgrgb.write ( out.str() + "rough.png" );
|
|
|
-#endif
|
|
|
-
|
|
|
- vector<double> scalesVec;
|
|
|
- for ( set<double>::const_iterator iter = scales.begin();
|
|
|
- iter != scales.end();
|
|
|
- ++iter )
|
|
|
- {
|
|
|
- scalesVec.push_back ( *iter );
|
|
|
- }
|
|
|
-
|
|
|
-#undef VISSEMSEG
|
|
|
-#ifdef VISSEMSEG
|
|
|
-
|
|
|
- for ( int j = 0 ; j < ( int ) preMap.channels(); j++ )
|
|
|
- {
|
|
|
- cout << "klasse: " << j << endl;//" " << cn.text ( j ) << endl;
|
|
|
-
|
|
|
- NICE::Matrix tmp ( preMap.ysize, preMap.xsize );
|
|
|
- double maxval = 0.0;
|
|
|
- for ( int y = 0; y < preMap.ysize; y++ )
|
|
|
- for ( int x = 0; x < preMap.xsize; x++ )
|
|
|
- {
|
|
|
- double val = preMap.get ( x, y, j );
|
|
|
- tmp ( y, x ) = val;
|
|
|
- maxval = std::max ( val, maxval );
|
|
|
- }
|
|
|
-
|
|
|
- NICE::ColorImage imgrgb ( preMap.xsize, preMap.ysize );
|
|
|
- ICETools::convertToRGB ( tmp, imgrgb );
|
|
|
-
|
|
|
- cout << "maxval = " << maxval << " for class " << j << endl; //cn.text ( j ) << endl;
|
|
|
-
|
|
|
- //Show ( ON, imgrgb, cn.text ( j ) );
|
|
|
- //showImage(imgrgb, "Ergebnis");
|
|
|
-
|
|
|
- std::string s;
|
|
|
- std::stringstream out;
|
|
|
- out << "tmpprebmap" << j << ".ppm";
|
|
|
- s = out.str();
|
|
|
- imgrgb.writePPM ( s );
|
|
|
-
|
|
|
- //getchar();
|
|
|
- }
|
|
|
-#endif
|
|
|
-
|
|
|
- // Gaußfiltern
|
|
|
- clog << "[log] SemSegCsruka::classifyregions: Wahrscheinlichkeitskarten erstellen -> Gaussfiltern" << endl;
|
|
|
- for ( int s = 0; s < scalesize; s++ )
|
|
|
- {
|
|
|
- double sigma = sigmaweight * 16.0 * scalesVec[s];
|
|
|
- cerr << "sigma: " << sigma << endl;
|
|
|
-#pragma omp parallel for
|
|
|
- for ( int i = 0; i < klassen; i++ )
|
|
|
- {
|
|
|
- if ( forbidden_classes.find ( i ) != forbidden_classes.end() )
|
|
|
- {
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- int pos = i + s * klassen;
|
|
|
-
|
|
|
- double maxval = preMap[pos](0,0);
|
|
|
- double minval = maxval;
|
|
|
-
|
|
|
- for ( int y = 0; y < ysize; y++ )
|
|
|
- {
|
|
|
- for ( int x = 0; x < xsize; x++ )
|
|
|
- {
|
|
|
- maxval = std::max ( maxval, preMap[pos](x,y) );
|
|
|
- minval = std::min ( minval, preMap[pos](x,y) );
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- NICE::FloatImage dblImg ( xsize, ysize );
|
|
|
- NICE::FloatImage gaussImg ( xsize, ysize );
|
|
|
-
|
|
|
- for ( int y = 0; y < ysize; y++ )
|
|
|
- {
|
|
|
- for ( int x = 0; x < xsize; x++ )
|
|
|
- {
|
|
|
- dblImg.setPixel ( x, y, preMap[pos](x,y) );
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- filterGaussSigmaApproximate<float, float, float> ( dblImg, sigma, &gaussImg );
|
|
|
-
|
|
|
- for ( int y = 0; y < ysize; y++ )
|
|
|
- {
|
|
|
- for ( int x = 0; x < xsize; x++ )
|
|
|
- {
|
|
|
- preMap[pos](x,y) = gaussImg.getPixel ( x, y );
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-#ifdef UNCERTAINTY
|
|
|
- filterGaussSigmaApproximate<float, float, float> ( uncert[s], sigma, &gaussUncert );
|
|
|
- uncert[s] = gaussUncert;
|
|
|
-#endif
|
|
|
- }
|
|
|
-
|
|
|
- // Zusammenfassen und auswerten
|
|
|
- clog << "[log] SemSegCsruka::classifyregions: Wahrscheinlichkeitskarten erstellen -> zusammenfassen und auswerten" << endl;
|
|
|
-//#pragma omp parallel for
|
|
|
- for ( int x = 0; x < xsize; x++ )
|
|
|
- {
|
|
|
- for ( int y = 0; y < ysize; y++ )
|
|
|
- {
|
|
|
- for ( int j = 0 ; j < ( int ) probabilities.channels(); j++ )
|
|
|
- {
|
|
|
- double prob = 0.0;
|
|
|
- for ( int s = 0; s < ( int ) scalesize; s++ )
|
|
|
- {
|
|
|
- prob += preMap.get ( x, y, j + s * klassen );
|
|
|
- }
|
|
|
-
|
|
|
- double val = prob / ( double ) ( scalesize );
|
|
|
- probabilities.set ( x, y, val, j );
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#ifdef UNCERTAINTY
|
|
|
- for ( int x = 0; x < xsize; x++ )
|
|
|
- {
|
|
|
- for ( int y = 0; y < ysize; y++ )
|
|
|
- {
|
|
|
- for ( int s = 0; s < ( int ) scalesize; s++ )
|
|
|
- {
|
|
|
- gaussUncert(x,y) += uncert[s](x,y);
|
|
|
- }
|
|
|
- gaussUncert(x,y)/=scalesize;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- maxu = -numeric_limits<double>::max();
|
|
|
- minu = numeric_limits<double>::max();
|
|
|
- for ( int y = 0; y < ysize; y++ )
|
|
|
- {
|
|
|
- for ( int x = 0; x < xsize; x++ )
|
|
|
- {
|
|
|
- double val = uncert[0] ( x, y );
|
|
|
- maxu = std::max ( val, maxu );
|
|
|
- minu = std::min ( val, minu );
|
|
|
- }
|
|
|
- }
|
|
|
- cout << "maxvo = " << maxu << " minvo = " << minu << endl;
|
|
|
-
|
|
|
- maxu = -numeric_limits<float>::max();
|
|
|
- minu = numeric_limits<float>::max();
|
|
|
-
|
|
|
- for ( int y = 0; y < ysize; y++ )
|
|
|
- {
|
|
|
- for ( int x = 0; x < xsize; x++ )
|
|
|
- {
|
|
|
- double val = gaussUncert ( x, y );
|
|
|
- maxu = std::max ( val, maxu );
|
|
|
- minu = std::min ( val, minu );
|
|
|
- }
|
|
|
- }
|
|
|
- cout << "maxvf = " << maxu << " minvf = " << minu << endl;
|
|
|
-
|
|
|
- gaussUncert(0,0) = 0.0;
|
|
|
- gaussUncert(0,1) = 0.04;
|
|
|
- ICETools::convertToRGB ( gaussUncert, imgrgb );
|
|
|
- imgrgb.write ( out.str() + "filtered.png" );
|
|
|
-
|
|
|
-#endif
|
|
|
-
|
|
|
-#undef VISSEMSEG
|
|
|
-#ifdef VISSEMSEG
|
|
|
-
|
|
|
- std::string s;
|
|
|
- std::stringstream out;
|
|
|
- std::vector< std::string > list2;
|
|
|
- StringTools::split ( Globals::getCurrentImgFN (), '/', list2 );
|
|
|
-
|
|
|
- out << "probmaps/" << list2.back() << ".probs";
|
|
|
-
|
|
|
- s = out.str();
|
|
|
-
|
|
|
- probabilities.store ( s );
|
|
|
-
|
|
|
- for ( int j = 0 ; j < ( int ) probabilities.channels(); j++ )
|
|
|
- {
|
|
|
- cout << "klasse: " << j << endl;//" " << cn.text ( j ) << endl;
|
|
|
-
|
|
|
- NICE::Matrix tmp ( probabilities.ysize, probabilities.xsize );
|
|
|
- double maxval = 0.0;
|
|
|
- for ( int y = 0; y < probabilities.ysize; y++ )
|
|
|
- for ( int x = 0; x < probabilities.xsize; x++ )
|
|
|
- {
|
|
|
- double val = probabilities.get ( x, y, j );
|
|
|
-
|
|
|
- tmp ( y, x ) = val;
|
|
|
- maxval = std::max ( val, maxval );
|
|
|
- }
|
|
|
-
|
|
|
- NICE::ColorImage imgrgb ( probabilities.xsize, probabilities.ysize );
|
|
|
- ICETools::convertToRGB ( tmp, imgrgb );
|
|
|
-
|
|
|
- cout << "maxval = " << maxval << " for class " << j << endl; //cn.text ( j ) << endl;
|
|
|
-
|
|
|
- //Show ( ON, imgrgb, cn.text ( j ) );
|
|
|
- //showImage(imgrgb, "Ergebnis");
|
|
|
-
|
|
|
- std::string s;
|
|
|
- std::stringstream out;
|
|
|
- out << "tmp" << j << ".ppm";
|
|
|
- s = out.str();
|
|
|
- imgrgb.writePPM ( s );
|
|
|
-
|
|
|
- //getchar();
|
|
|
- }
|
|
|
-#endif
|
|
|
- if ( useregions )
|
|
|
- {
|
|
|
- if ( bestclasses > 0 )
|
|
|
- {
|
|
|
- PSSImageLevelPrior pss ( 0, bestclasses, 0.2 );
|
|
|
- pss.setPrior ( fV );
|
|
|
- pss.postprocess ( segresult, probabilities );
|
|
|
- }
|
|
|
-
|
|
|
- //Regionen ermitteln
|
|
|
-
|
|
|
- int regionsize = seg->segRegions ( img, mask );
|
|
|
-
|
|
|
- Regionen.clear();
|
|
|
- vector<vector <double> > regionprob;
|
|
|
-
|
|
|
-#ifdef UNCERTAINTY
|
|
|
- vector<double> regionUncert;
|
|
|
-#endif
|
|
|
-
|
|
|
- // Wahrscheinlichkeiten für jede Region initialisieren
|
|
|
- for ( int i = 0; i < regionsize; i++ )
|
|
|
- {
|
|
|
- vector<double> tmp;
|
|
|
- for ( int j = 0; j < ( int ) probabilities.channels(); j++ )
|
|
|
- {
|
|
|
- tmp.push_back ( 0.0 );
|
|
|
- }
|
|
|
- regionprob.push_back ( tmp );
|
|
|
- Regionen.push_back ( pair<int, Example> ( 0, Example() ) );
|
|
|
-#ifdef UNCERTAINTY
|
|
|
- regionUncert.push_back ( 0.0 );
|
|
|
-#endif
|
|
|
- }
|
|
|
-
|
|
|
- // Wahrscheinlichkeiten für Regionen bestimmen
|
|
|
- for ( int x = 0; x < xsize; x++ )
|
|
|
- {
|
|
|
- for ( int y = 0; y < ysize; y++ )
|
|
|
- {
|
|
|
- int pos = mask ( x, y );
|
|
|
- Regionen[pos].second.weight += 1.0;
|
|
|
- Regionen[pos].second.x += x;
|
|
|
- Regionen[pos].second.y += y;
|
|
|
- for ( int j = 0 ; j < ( int ) probabilities.channels(); j++ )
|
|
|
- {
|
|
|
- double val = probabilities.get ( x, y, j );
|
|
|
- regionprob[pos][j] += val;
|
|
|
- }
|
|
|
-#ifdef UNCERTAINTY
|
|
|
- regionUncert[pos] += gaussUncert ( x, y );
|
|
|
-#endif
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- /*
|
|
|
- cout << "regions: " << regionsize << endl;
|
|
|
- cout << "outfeats: " << endl;
|
|
|
- for(int j = 0; j < regionprob.size(); j++)
|
|
|
- {
|
|
|
- for(int i = 0; i < regionprob[j].size(); i++)
|
|
|
- {
|
|
|
- cout << regionprob[j][i] << " ";
|
|
|
- }
|
|
|
- cout << endl;
|
|
|
- }
|
|
|
- cout << endl;
|
|
|
- getchar();*/
|
|
|
-
|
|
|
- // beste Wahrscheinlichkeit je Region wählen
|
|
|
- for ( int i = 0; i < regionsize; i++ )
|
|
|
- {
|
|
|
- if ( Regionen[i].second.weight > 0 )
|
|
|
- {
|
|
|
- Regionen[i].second.x /= ( int ) Regionen[i].second.weight;
|
|
|
- Regionen[i].second.y /= ( int ) Regionen[i].second.weight;
|
|
|
- }
|
|
|
- double maxval = -numeric_limits<double>::max();
|
|
|
- int maxpos = 0;
|
|
|
-
|
|
|
- for ( int j = 0 ; j < ( int ) regionprob[i].size(); j++ )
|
|
|
- {
|
|
|
- if ( forbidden_classes.find ( j ) != forbidden_classes.end() )
|
|
|
- continue;
|
|
|
-
|
|
|
- regionprob[i][j] /= Regionen[i].second.weight;
|
|
|
-
|
|
|
- if ( maxval < regionprob[i][j] )
|
|
|
- {
|
|
|
- maxval = regionprob[i][j];
|
|
|
- maxpos = j;
|
|
|
- }
|
|
|
- probabilities.set ( Regionen[i].second.x, Regionen[i].second.y, regionprob[i][j], j );
|
|
|
- }
|
|
|
-
|
|
|
- Regionen[i].first = maxpos;
|
|
|
-#ifdef UNCERTAINTY
|
|
|
- regionUncert[i] /= Regionen[i].second.weight;
|
|
|
-#endif
|
|
|
- }
|
|
|
-
|
|
|
- // Pixel jeder Region labeln
|
|
|
- for ( int y = 0; y < ( int ) mask.cols(); y++ )
|
|
|
- {
|
|
|
- for ( int x = 0; x < ( int ) mask.rows(); x++ )
|
|
|
- {
|
|
|
- int pos = mask ( x, y );
|
|
|
- segresult.setPixel ( x, y, Regionen[pos].first );
|
|
|
-#ifdef UNCERTAINTY
|
|
|
- gaussUncert ( x, y ) = regionUncert[pos];
|
|
|
-#endif
|
|
|
- }
|
|
|
- }
|
|
|
-#ifdef UNCERTAINTY
|
|
|
- maxu = -numeric_limits<float>::max();
|
|
|
- minu = numeric_limits<float>::max();
|
|
|
- for ( int y = 0; y < ysize; y++ )
|
|
|
- {
|
|
|
- for ( int x = 0; x < xsize; x++ )
|
|
|
- {
|
|
|
- //float val = uncert(x,y);
|
|
|
- double val = gaussUncert ( x, y );
|
|
|
- maxu = std::max ( val, maxu );
|
|
|
- minu = std::min ( val, minu );
|
|
|
- }
|
|
|
- }
|
|
|
- cout << "maxvr = " << maxu << " minvr = " << minu << endl;
|
|
|
-// uncert(0,0) = 1;
|
|
|
-// uncert(0,1) = 0;
|
|
|
- ICETools::convertToRGB ( gaussUncert, imgrgb );
|
|
|
- imgrgb.write ( out.str() + "region.png" );
|
|
|
-#endif
|
|
|
-
|
|
|
-#undef WRITEREGIONS
|
|
|
-#ifdef WRITEREGIONS
|
|
|
- RegionGraph rg;
|
|
|
- seg->getGraphRepresentation ( img, mask, rg );
|
|
|
- for ( uint pos = 0; pos < regionprob.size(); pos++ )
|
|
|
- {
|
|
|
- rg[pos]->setProbs ( regionprob[pos] );
|
|
|
- }
|
|
|
-
|
|
|
- std::string s;
|
|
|
- std::stringstream out;
|
|
|
- std::vector< std::string > list;
|
|
|
- StringTools::split ( Globals::getCurrentImgFN (), '/', list );
|
|
|
-
|
|
|
- out << "rgout/" << list.back() << ".graph";
|
|
|
- string writefile = out.str();
|
|
|
- rg.write ( writefile );
|
|
|
-#endif
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
-
|
|
|
- PSSImageLevelPrior pss ( 1, 4, 0.2 );
|
|
|
- pss.setPrior ( fV );
|
|
|
- pss.postprocess ( segresult, probabilities );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- // Saubermachen:
|
|
|
- clog << "[log] SemSegCsurka::classifyregions: sauber machen" << endl;
|
|
|
- for ( int i = 0; i < ( int ) pce.size(); i++ )
|
|
|
- {
|
|
|
- pce[i].second.clean();
|
|
|
- }
|
|
|
- pce.clear();
|
|
|
-
|
|
|
- if ( cSIFT != NULL )
|
|
|
- delete cSIFT;
|
|
|
- if ( writeFeats != NULL )
|
|
|
- delete writeFeats;
|
|
|
- if ( readFeats != NULL )
|
|
|
- delete readFeats;
|
|
|
- getFeats = NULL;
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka::semanticseg ( CachedExample *ce, NICE::Image & segresult, NICE::MultiChannelImageT<double> & probabilities )
|
|
|
-{
|
|
|
- Examples regions;
|
|
|
- NICE::Matrix regionmask;
|
|
|
- classifyregions ( ce, segresult, probabilities, regions, regionmask );
|
|
|
- if ( userellocprior || srg != NULL || gcopt != NULL )
|
|
|
- {
|
|
|
- if ( userellocprior )
|
|
|
- relloc->postprocess ( regions, probabilities );
|
|
|
-
|
|
|
- if ( srg != NULL )
|
|
|
- srg->optimizeShape ( regions, regionmask, probabilities );
|
|
|
-
|
|
|
- if ( gcopt != NULL )
|
|
|
- gcopt->optimizeImage ( regions, regionmask, probabilities );
|
|
|
-
|
|
|
- // Pixel jeder Region labeln
|
|
|
- for ( int y = 0; y < ( int ) regionmask.cols(); y++ )
|
|
|
- {
|
|
|
- for ( int x = 0; x < ( int ) regionmask.rows(); x++ )
|
|
|
- {
|
|
|
- int pos = regionmask ( x, y );
|
|
|
- segresult.setPixel ( x, y, regions[pos].first );
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#ifndef NOVISUAL
|
|
|
-#undef VISSEMSEG
|
|
|
-#ifdef VISSEMSEG
|
|
|
-// showImage(img);
|
|
|
- for ( int j = 0 ; j < ( int ) probabilities.channels(); j++ )
|
|
|
- {
|
|
|
- cout << "klasse: " << j << " " << cn.text ( j ) << endl;
|
|
|
-
|
|
|
- NICE::Matrix tmp ( probabilities.ysize, probabilities.xsize );
|
|
|
- double maxval = -numeric_limits<double>::max();
|
|
|
- for ( int y = 0; y < probabilities.ysize; y++ )
|
|
|
- for ( int x = 0; x < probabilities.xsize; x++ )
|
|
|
- {
|
|
|
- double val = probabilities.get ( x, y, j );
|
|
|
- tmp ( y, x ) = val;
|
|
|
- maxval = std::max ( val, maxval );
|
|
|
- }
|
|
|
-
|
|
|
- NICE::ColorImage imgrgb ( probabilities.xsize, probabilities.ysize );
|
|
|
- ICETools::convertToRGB ( tmp, imgrgb );
|
|
|
-
|
|
|
- cout << "maxval = " << maxval << " for class " << cn.text ( j ) << endl;
|
|
|
-
|
|
|
- Show ( ON, imgrgb, cn.text ( j ) );
|
|
|
- imgrgb.Write ( "tmp.ppm" );
|
|
|
-
|
|
|
- getchar();
|
|
|
- }
|
|
|
-#endif
|
|
|
-#endif
|
|
|
-
|
|
|
-}
|