|
@@ -1,1720 +0,0 @@
|
|
|
-/**
|
|
|
- * @file SemSegCsurka2.cpp
|
|
|
- * @brief semantic segmentation using the method from Csurka08
|
|
|
- * @author Björn Fröhlich
|
|
|
- * @date 04/24/2009
|
|
|
- */
|
|
|
-#include <iostream>
|
|
|
-
|
|
|
-#include "SemSegCsurka2.h"
|
|
|
-
|
|
|
-#include "objrec/fourier/FourierLibrary.h"
|
|
|
-
|
|
|
-#include "objrec/baselib/ICETools.h"
|
|
|
-
|
|
|
-
|
|
|
-#include <sstream>
|
|
|
-
|
|
|
-using namespace std;
|
|
|
-using namespace NICE;
|
|
|
-using namespace OBJREC;
|
|
|
-
|
|
|
-#undef DEBUG_CSURK
|
|
|
-
|
|
|
-void readFeats(VVector &features, VVector &positions, string file, string posfile)
|
|
|
-{
|
|
|
- ifstream fin (file.c_str());
|
|
|
- int nb;
|
|
|
- int dim;
|
|
|
-
|
|
|
- fin >> nb;
|
|
|
- fin >> dim;
|
|
|
- for(int i = 0; i < nb; i++)
|
|
|
- {
|
|
|
- int l;
|
|
|
- Vector vec(dim);
|
|
|
- fin >> l;
|
|
|
- for(int d = 0; d < dim; d++)
|
|
|
- {
|
|
|
- fin >> vec[d];
|
|
|
- }
|
|
|
- features.push_back(vec);
|
|
|
- assert(vec.size() == features[0].size());
|
|
|
- }
|
|
|
- fin.close();
|
|
|
-
|
|
|
- ifstream posin(posfile.c_str());
|
|
|
-
|
|
|
- posin >> nb;
|
|
|
- posin >> dim;
|
|
|
- for(int i = 0; i < nb; i++)
|
|
|
- {
|
|
|
- Vector vec(dim);
|
|
|
- for(int d = 0; d < dim; d++)
|
|
|
- {
|
|
|
- posin >> vec[d];
|
|
|
- }
|
|
|
- positions.push_back(vec);
|
|
|
- assert(vec.size() == positions[0].size());
|
|
|
- }
|
|
|
- posin.close();
|
|
|
-
|
|
|
- cout << "positions: " << positions.size() << " feats.size: " << features.size() << endl;
|
|
|
-}
|
|
|
-
|
|
|
-void readex(string file, Examples &examples)
|
|
|
-{
|
|
|
- ifstream fin (file.c_str());
|
|
|
- int nb;
|
|
|
- int dim;
|
|
|
-
|
|
|
- fin >> nb;
|
|
|
- fin >> dim;
|
|
|
- for(int i = 0; i < nb; i++)
|
|
|
- {
|
|
|
- int l;
|
|
|
- Vector *vec = new Vector(dim);
|
|
|
- fin >> l;
|
|
|
- for(int d = 0; d < dim; d++)
|
|
|
- {
|
|
|
- fin >> (*vec)[d];
|
|
|
- }
|
|
|
- Example ex;
|
|
|
- ex.vec = vec;
|
|
|
- ex.svec = NULL;
|
|
|
- ex.ce = NULL;
|
|
|
- examples.push_back(pair<int, Example> ( l, ex));
|
|
|
- //assert(vec.size() == (examples[0].second.vec->size());
|
|
|
- }
|
|
|
- fin.close();
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-SemSegCsurka2::SemSegCsurka2 ( const Config *conf,
|
|
|
- const MultiDataset *md )
|
|
|
- : SemanticSegmentation ( conf, & ( md->getClassNames ( "train" ) ) )
|
|
|
-{
|
|
|
- this->conf = conf;
|
|
|
- save_cache = conf->gB ( "FPCPixel", "save_cache", true );
|
|
|
- read_cache = conf->gB ( "FPCPixel", "read_cache", false );
|
|
|
- cache = conf->gS ( "cache", "root", "" );
|
|
|
- sigmaweight = conf->gD ( "SemSegCsurka", "sigmaweight", 0.6 );
|
|
|
-
|
|
|
- dim = conf->gI ( "SemSegCsurka", "pcadim", 50 );
|
|
|
-
|
|
|
- usepca = conf->gB ( "SemSegCsurka", "usepca", true );
|
|
|
- calcpca = conf->gB ( "SemSegCsurka", "calcpca", false );
|
|
|
-
|
|
|
- usegmm = conf->gB ( "SemSegCsurka", "usegmm", false );
|
|
|
- norm = conf->gB ( "SemSegCsurka", "normalize", false );
|
|
|
- usefisher = conf->gB ( "SemSegCsurka", "usefisher", false );
|
|
|
- dogmm = conf->gB ( "SemSegCsurka", "dogmm", false );
|
|
|
- gaussians = conf->gI ( "SemSegCsurka", "gaussians", 50 );
|
|
|
-
|
|
|
- usekmeans = conf->gB ( "SemSegCsurka", "usekmeans", false );
|
|
|
- kmeansfeat = conf->gI ( "SemSegCsurka", "kmeansfeat", 50 );
|
|
|
- kmeanshard = conf->gB ( "SemSegCsurka", "kmeanshard", false );
|
|
|
-
|
|
|
- cname = conf->gS ( "SemSegCsurka", "classifier", "RandomForests" );
|
|
|
- anteil = conf->gD ( "SemSegCsurka", "anteil", 1.0 );
|
|
|
- userellocprior = conf->gB ( "SemSegCsurka", "rellocfeat", false );
|
|
|
- bool usesrg = conf->gB ( "SemSegCsurka", "usesrg", false );
|
|
|
-
|
|
|
- useregions = conf->gB ( "SemSegCsurka", "useregions", true );
|
|
|
- savesteps = conf->gB ( "SemSegCsurka", "savesteps", true );
|
|
|
- bool usegcopt = conf->gB ( "SemSegCsurka", "usegcopt", false );
|
|
|
-
|
|
|
- bestclasses = conf->gI ( "SemSegCsurka", "bestclasses", 0 );
|
|
|
-
|
|
|
- smoothhl = conf->gB ( "SemSegCsurka", "smoothhl", false );
|
|
|
- smoothfactor = conf->gD ( "SemSegCsurka", "smoothfactor", 1.0 );
|
|
|
-
|
|
|
- usecolorfeats = conf->gB("SemSegCsurka", "usecolorfeats", false);
|
|
|
-
|
|
|
- if ( !useregions && ( userellocprior || usesrg ) )
|
|
|
- {
|
|
|
- cerr << "relative location priors and super region growing are just supported in combination with useregions" << endl;
|
|
|
- exit ( 1 );
|
|
|
- }
|
|
|
-
|
|
|
- if ( usepca )
|
|
|
- pca = PCA ( dim );
|
|
|
-
|
|
|
- RegionSegmentationMethod * tmpseg = new RSMeanShift ( conf );
|
|
|
-
|
|
|
- seg = new RSCache ( conf, tmpseg );
|
|
|
-
|
|
|
- if ( userellocprior )
|
|
|
- relloc = new RelativeLocationPrior ( conf );
|
|
|
- else
|
|
|
- relloc = NULL;
|
|
|
-
|
|
|
- if ( usesrg )
|
|
|
- srg = new PPSuperregion ( conf );
|
|
|
- else
|
|
|
- srg = NULL;
|
|
|
-
|
|
|
- if ( usegcopt )
|
|
|
- gcopt = new PPGraphCut ( conf );
|
|
|
- else
|
|
|
- gcopt = NULL;
|
|
|
-
|
|
|
- classifier = NULL;
|
|
|
- vclassifier = NULL;
|
|
|
- if ( cname == "RandomForests" )
|
|
|
- classifier = new FPCRandomForests ( conf, "ClassifierForest" );
|
|
|
- else if ( cname == "SMLR" )
|
|
|
- classifier = new FPCSMLR ( conf, "ClassifierSMLR" );
|
|
|
- else
|
|
|
- vclassifier = CSGeneric::selectVecClassifier ( conf, "main" );
|
|
|
- //classifier = new FPCSparseMultinomialLogisticRegression(conf, "ClassifierSMLR");
|
|
|
-
|
|
|
- if(classifier != NULL)
|
|
|
- classifier->setMaxClassNo ( classNames->getMaxClassno() );
|
|
|
- else
|
|
|
- vclassifier->setMaxClassNo ( classNames->getMaxClassno() );
|
|
|
-
|
|
|
- cn = md->getClassNames ( "train" );
|
|
|
-
|
|
|
- if ( read_cache )
|
|
|
- {
|
|
|
- fprintf ( stderr, "SemSegCsurka2:: Reading classifier data from %s\n", ( cache+"/fpcrf.data" ).c_str() );
|
|
|
-
|
|
|
- if(classifier != NULL)
|
|
|
- classifier->read ( cache+"/fpcrf.data" );
|
|
|
- else
|
|
|
- vclassifier->read ( cache+"/veccl.data" );
|
|
|
-
|
|
|
- if ( usepca )
|
|
|
- {
|
|
|
- std::string filename = cache + "/pca";
|
|
|
- pca.read ( filename );
|
|
|
- }
|
|
|
-
|
|
|
- if ( usegmm )
|
|
|
- {
|
|
|
- g = new GMM ( conf, gaussians );
|
|
|
-
|
|
|
- if ( !g->loadData ( cache+"/gmm" ) )
|
|
|
- {
|
|
|
- cerr << "SemSegCsurka2:: no gmm file found" << endl;
|
|
|
- exit ( -1 );
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if ( usekmeans )
|
|
|
- {
|
|
|
- k = new KMeansOnline ( gaussians );
|
|
|
- }
|
|
|
-
|
|
|
- fprintf ( stderr, "SemSegCsurka2:: successfully read\n" );
|
|
|
-
|
|
|
- std::string filename = cache + "/rlp";
|
|
|
-
|
|
|
- FILE *value;
|
|
|
- value = fopen ( filename.c_str(),"r" );
|
|
|
-
|
|
|
- if ( value==NULL )
|
|
|
- {
|
|
|
- trainpostprocess ( md );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- if ( userellocprior )
|
|
|
- {
|
|
|
- relloc->read ( filename );
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- filename = cache + "/srg";
|
|
|
-
|
|
|
- value = fopen ( filename.c_str(),"r" );
|
|
|
-
|
|
|
- if ( value==NULL )
|
|
|
- {
|
|
|
- trainpostprocess ( md );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- if ( srg != NULL )
|
|
|
- {
|
|
|
- srg->read ( filename );
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- train ( md );
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-SemSegCsurka2::~SemSegCsurka2()
|
|
|
-{
|
|
|
- // clean-up
|
|
|
- if ( classifier != NULL )
|
|
|
- delete classifier;
|
|
|
- if( vclassifier !=NULL)
|
|
|
- delete vclassifier;
|
|
|
- if ( seg != NULL )
|
|
|
- delete seg;
|
|
|
- if ( g != NULL )
|
|
|
- delete g;
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka2::normalize(Examples &ex)
|
|
|
-{
|
|
|
- assert(ex.size() > 0);
|
|
|
- if(vecmin.size() == 0)
|
|
|
- {
|
|
|
- for(int j = 0; j < (int)ex[0].second.vec->size(); j++)
|
|
|
- {
|
|
|
- double maxv = -numeric_limits<int>::max();
|
|
|
- double minv = numeric_limits<int>::max();
|
|
|
- for(int i = 0; i < (int)ex.size(); i++)
|
|
|
- {
|
|
|
- maxv = std::max(maxv,(*ex[i].second.vec)[j]);
|
|
|
- minv = std::min(minv,(*ex[i].second.vec)[j]);
|
|
|
- }
|
|
|
- vecmin.push_back(minv);
|
|
|
- vecmax.push_back(maxv);
|
|
|
- }
|
|
|
- }
|
|
|
- for(int i = 0; i < (int)ex.size(); i++)
|
|
|
- {
|
|
|
- for(int j = 0; j < (int)ex[i].second.vec->size(); j++)
|
|
|
- {
|
|
|
- (*ex[i].second.vec)[j] = ((*ex[i].second.vec)[j]-vecmin[j])/(vecmax[j]-vecmin[j]);
|
|
|
- }
|
|
|
- }
|
|
|
- return;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-void SemSegCsurka2::convertLowToHigh ( Examples &ex, double reduce )
|
|
|
-{
|
|
|
- cout << "converting low-level features to high-level features" << endl;
|
|
|
-
|
|
|
- if ( reduce >= 1.0 )
|
|
|
- {
|
|
|
- for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
- {
|
|
|
- SparseVector *f = new SparseVector();
|
|
|
- if ( usekmeans )
|
|
|
- k->getDist ( *ex[i].second.vec, *f, kmeansfeat, kmeanshard );
|
|
|
- else
|
|
|
- {
|
|
|
- if ( usefisher )
|
|
|
- g->getFisher ( *ex[i].second.vec, *f );
|
|
|
- else
|
|
|
- g->getProbs ( *ex[i].second.vec, *f );
|
|
|
- }
|
|
|
- delete ex[i].second.vec;
|
|
|
- ex[i].second.vec = NULL;
|
|
|
- ex[i].second.svec = f;
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- srand ( time ( NULL ) );
|
|
|
-
|
|
|
- vector<int> del;
|
|
|
- cout << "Example size old " << ex.size() << endl;
|
|
|
- for ( int i = 0; i < ( int ) ex.size(); i++ )
|
|
|
- {
|
|
|
- double rval = ( double ) rand() / ( double ) RAND_MAX;
|
|
|
- if ( rval < reduce )
|
|
|
- {
|
|
|
- SparseVector *f = new SparseVector();
|
|
|
-
|
|
|
- if ( usekmeans )
|
|
|
- k->getDist ( *ex[i].second.vec, *f, kmeansfeat, kmeanshard );
|
|
|
- else
|
|
|
- {
|
|
|
- if ( usefisher )
|
|
|
- g->getFisher ( *ex[i].second.vec, *f );
|
|
|
- else
|
|
|
- g->getProbs ( *ex[i].second.vec, *f );
|
|
|
- }
|
|
|
-
|
|
|
- delete ex[i].second.vec;
|
|
|
- ex[i].second.vec = NULL;
|
|
|
- ex[i].second.svec = f;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- del.push_back ( i );
|
|
|
- }
|
|
|
- }
|
|
|
- for ( int i = ( int ) del.size() - 1; i >= 0; i-- )
|
|
|
- {
|
|
|
- ex.erase ( ex.begin() +del[i] );
|
|
|
- }
|
|
|
- cerr << "Example size new " << ex.size() << endl;
|
|
|
- }
|
|
|
- cerr << "converting low-level features to high-level features finished" << endl;
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka2::smoothHL ( Examples ex )
|
|
|
-{
|
|
|
-
|
|
|
- if ( !smoothhl )
|
|
|
- return;
|
|
|
- assert ( ex.size() > 1 );
|
|
|
-
|
|
|
- long long int minx = numeric_limits<long long int>::max();
|
|
|
- long long int miny = numeric_limits<long long int>::max();
|
|
|
- long long int maxx = -numeric_limits<long long int>::max();
|
|
|
- long long int maxy = -numeric_limits<long long int>::max();
|
|
|
- long long int distx = numeric_limits<long long int>::max();
|
|
|
- long long int disty = numeric_limits<long long int>::max();
|
|
|
-
|
|
|
- set<double> scales;
|
|
|
- for ( int i = 0; i < (int)ex.size(); i++ )
|
|
|
- {
|
|
|
- scales.insert ( ex[i].second.scale );
|
|
|
- }
|
|
|
-
|
|
|
- map<double, int> scalepos;
|
|
|
- int it = 0;
|
|
|
-
|
|
|
- for ( set<double>::const_iterator iter = scales.begin(); iter != scales.end(); ++iter, ++it )
|
|
|
- {
|
|
|
- scalepos.insert(make_pair(*iter, it));
|
|
|
- }
|
|
|
-
|
|
|
- for ( int i = 0; i < (int)ex.size(); i++ )
|
|
|
- {
|
|
|
- if ( minx < numeric_limits<int>::max() && ex[i].second.x - minx > 0 )
|
|
|
- distx = std::min ( distx, ex[i].second.x - minx );
|
|
|
- if ( miny < numeric_limits<int>::max() && ex[i].second.y - miny > 0 )
|
|
|
- disty = std::min ( disty, ex[i].second.y - miny );
|
|
|
- minx = std::min ( ex[i].second.x, minx );
|
|
|
- maxx = std::max ( ex[i].second.x, maxx );
|
|
|
- miny = std::min ( ex[i].second.y, miny );
|
|
|
- maxy = std::max ( ex[i].second.y, maxy );
|
|
|
- }
|
|
|
-
|
|
|
- distx = abs ( distx );
|
|
|
-
|
|
|
- int xsize = ( maxx - minx ) /distx +1;
|
|
|
- int ysize = ( maxy - miny ) /disty +1;
|
|
|
- double valx = ( ( double ) xsize-1 ) / ( double ) ( maxx - minx );
|
|
|
- double valy = ( ( double ) ysize-1 ) / ( double ) ( maxy - miny );
|
|
|
-
|
|
|
- //double sigma = smoothfactor;
|
|
|
- double sigma = std::max(xsize,ysize) * smoothfactor;
|
|
|
- //double sigma = 0.2;
|
|
|
- cout << "sigma1: " << sigma << endl;
|
|
|
-
|
|
|
- vector<NICE::FloatImage> imgv;
|
|
|
- vector<NICE::FloatImage> gaussImgv;
|
|
|
- for(int i = 0; i < (int)scalepos.size(); i++)
|
|
|
- {
|
|
|
- NICE::FloatImage img( xsize, ysize);
|
|
|
- NICE::FloatImage gaussImg( xsize, ysize);
|
|
|
- imgv.push_back(img);
|
|
|
- gaussImgv.push_back(gaussImg);
|
|
|
- }
|
|
|
-
|
|
|
- for ( int d = 0; d < ex[0].second.svec->getDim(); d++ )
|
|
|
- {
|
|
|
- //TODO: max und min dynamisches bestimmen
|
|
|
-
|
|
|
- for(int i = 0; i < (int)scalepos.size(); i++)
|
|
|
- {
|
|
|
- imgv[i].set(0.0);
|
|
|
- gaussImgv[i].set(0.0);
|
|
|
- }
|
|
|
-
|
|
|
- for ( int i = 0; i < (int)ex.size(); i++ )
|
|
|
- {
|
|
|
- int xpos = ( ex[i].second.x - minx ) *valx;
|
|
|
- int ypos = ( ex[i].second.y - miny ) *valy;
|
|
|
-
|
|
|
- double val = ex[i].second.svec->get ( d );
|
|
|
- // refactor-nice.pl: check this substitution
|
|
|
- // old: PutValD ( imgv[scalepos[ex[i].second.scale]],xpos,ypos,val);
|
|
|
- imgv[scalepos[ex[i].second.scale]].setPixel(xpos,ypos,val);
|
|
|
- }
|
|
|
-
|
|
|
- /*
|
|
|
- for(int y = 0; y < ysize; y++)
|
|
|
- {
|
|
|
- for(int x = 0; x < xsize; x++)
|
|
|
- {
|
|
|
- // refactor-nice.pl: check this substitution
|
|
|
- // old: double val = GetValD(img,x,y);
|
|
|
- double val = img.getPixel(x,y);
|
|
|
- double c = 0.0;
|
|
|
- if(val == 0.0)
|
|
|
- {
|
|
|
- if(x > 0)
|
|
|
- {
|
|
|
- // refactor-nice.pl: check this substitution
|
|
|
- // old: val+=GetValD(img,x-1,y);
|
|
|
- val+=img.getPixel(x-1,y);
|
|
|
- c+=1.0;
|
|
|
- }
|
|
|
- if(y > 0)
|
|
|
- {
|
|
|
- // refactor-nice.pl: check this substitution
|
|
|
- // old: val+=GetValD(img,x,y-1);
|
|
|
- val+=img.getPixel(x,y-1);
|
|
|
- c+=1.0;
|
|
|
- }
|
|
|
- if(x < xsize-1)
|
|
|
- {
|
|
|
- // refactor-nice.pl: check this substitution
|
|
|
- // old: val+=GetValD(img,x+1,y);
|
|
|
- val+=img.getPixel(x+1,y);
|
|
|
- c+=1.0;
|
|
|
- }
|
|
|
- if(y < ysize-1)
|
|
|
- {
|
|
|
- // refactor-nice.pl: check this substitution
|
|
|
- // old: val+=GetValD(img,x,y+1);
|
|
|
- val+=img.getPixel(x,y+1);
|
|
|
- c+=1.0;
|
|
|
- }
|
|
|
- // refactor-nice.pl: check this substitution
|
|
|
- // old: PutValD(img,x,y,val/c);
|
|
|
- img.setPixel(x,y,val/c);
|
|
|
- }
|
|
|
- }
|
|
|
- }*/
|
|
|
-
|
|
|
- for(int i = 0; i < (int)imgv.size(); i++)
|
|
|
- FourierLibrary::gaussFilterD ( imgv[i], gaussImgv[i], sigma );
|
|
|
-
|
|
|
- for ( int i = 0; i < (int)ex.size(); i++ )
|
|
|
- {
|
|
|
- int xpos = ( ex[i].second.x - minx ) *valx;
|
|
|
- int ypos = ( ex[i].second.y - miny ) *valy;
|
|
|
- // refactor-nice.pl: check this substitution
|
|
|
- // old: double val = GetValD ( gaussImgv[scalepos[ex[i].second.scale]], xpos, ypos );
|
|
|
- double val = gaussImgv[scalepos[ex[i].second.scale]].getPixel(xpos,ypos);
|
|
|
-
|
|
|
- if ( fabs ( val ) < 1e-7 )
|
|
|
- {
|
|
|
- if ( ex[i].second.svec->get ( d ) != 0.0 )
|
|
|
- {
|
|
|
- ex[i].second.svec->erase ( d );
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- ( *ex[i].second.svec ) [d] = val;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka2::initializePCA ( Examples &ex )
|
|
|
-{
|
|
|
-#ifdef DEBUG
|
|
|
- cerr << "start computing pca" << endl;
|
|
|
-#endif
|
|
|
- std::string filename = cache + "/pca";
|
|
|
-
|
|
|
- FILE *value;
|
|
|
- value = fopen ( filename.c_str(),"r" );
|
|
|
-
|
|
|
- if ( value==NULL || calcpca )
|
|
|
- {
|
|
|
- srand ( time ( NULL ) );
|
|
|
-
|
|
|
- int featsize = ( int ) ex.size();
|
|
|
- int maxfeatures = dim*10;
|
|
|
- int olddim = ex[0].second.vec->size();
|
|
|
-
|
|
|
- maxfeatures = std::min ( maxfeatures, featsize );
|
|
|
-
|
|
|
- NICE::Matrix features ( maxfeatures, olddim );
|
|
|
-
|
|
|
- for ( int i = 0; i < maxfeatures; i++ )
|
|
|
- {
|
|
|
- int k = rand() % featsize;
|
|
|
-
|
|
|
- int vsize = (int)ex[k].second.vec->size();
|
|
|
- for(int j = 0; j < vsize; j++)
|
|
|
- {
|
|
|
- features(i,j) = (*( ex[k].second.vec))[j];
|
|
|
- }
|
|
|
- }
|
|
|
- pca.calculateBasis ( features, dim, 1 );
|
|
|
-
|
|
|
- if ( save_cache )
|
|
|
- pca.save ( filename );
|
|
|
-
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- cout << "readpca: " << filename << endl;
|
|
|
- pca.read ( filename );
|
|
|
- cout << "end" << endl;
|
|
|
- }
|
|
|
-#ifdef DEBUG
|
|
|
- cerr << "finished computing pca" << endl;
|
|
|
-#endif
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka2::doPCA ( Examples &ex )
|
|
|
-{
|
|
|
- cout << "converting features using pca starts" << endl;
|
|
|
-
|
|
|
- std::string savedir = cname = conf->gS ( "cache", "root", "/dev/null/" );
|
|
|
- std::string shortf = ex.filename;
|
|
|
- if ( string::npos != ex.filename.rfind ( "/" ) )
|
|
|
- shortf = ex.filename.substr ( ex.filename.rfind ( "/" ) );
|
|
|
- std::string filename = savedir+"/pcasave/"+shortf;
|
|
|
- std::string syscall = "mkdir "+savedir+"/pcasave";
|
|
|
- system ( syscall.c_str() );
|
|
|
- cout << "filename: " << filename << endl;
|
|
|
-
|
|
|
- if ( !FileMgt::fileExists(filename) || calcpca )
|
|
|
- {
|
|
|
- ofstream ofStream;
|
|
|
-
|
|
|
- //Opens the file binary
|
|
|
- ofStream.open ( filename.c_str(),fstream::out | fstream::binary );
|
|
|
-
|
|
|
- for ( int k = 0; k < ( int ) ex.size(); k++ )
|
|
|
- {
|
|
|
- NICE::Vector tmp = pca.getFeatureVector ( * ( ex[k].second.vec ), true );
|
|
|
- delete ex[k].second.vec;
|
|
|
- for ( int d = 0; d < (int)tmp.size(); d++ )
|
|
|
- ofStream.write ( ( char* ) &tmp[d], sizeof ( double ) );
|
|
|
- ex[k].second.vec = new NICE::Vector ( tmp );
|
|
|
- }
|
|
|
- ofStream.close();
|
|
|
- cout << endl;
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- ifstream ifStream;
|
|
|
- ifStream.open ( filename.c_str(),std::fstream::in | std::fstream::binary );
|
|
|
- for ( int k = 0; k < ( int ) ex.size(); k++ )
|
|
|
- {
|
|
|
- NICE::Vector tmp = NICE::Vector ( dim );
|
|
|
- delete ex[k].second.vec;
|
|
|
- for ( int d = 0; d < dim; d++ )
|
|
|
- ifStream.read ( ( char* ) &tmp[d], sizeof ( double ) );
|
|
|
- ex[k].second.vec = new NICE::Vector ( tmp );
|
|
|
- }
|
|
|
-
|
|
|
- ifStream.close();
|
|
|
- }
|
|
|
- cout << "converting features using pca finished" << endl;
|
|
|
-}
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-
|
|
|
-void SemSegCsurka2::train ( const MultiDataset *md )
|
|
|
-{
|
|
|
-
|
|
|
- /*die einzelnen Trainingsschritte
|
|
|
- 1. auf allen Trainingsbilder SIFT Merkmale an den Gitterpunkten bei allen Auflösungen bestimmen
|
|
|
- 2. PCA anwenden
|
|
|
- 3. aus diesen ein GMM erstellen
|
|
|
- 4. für jedes SIFT-Merkmal einen Vektor erstellen, der an der Stelle i die Wahrscheinlichkeit enthällt zur Verteilung i des GMM, Zur Zeit mit BoV-Alternative durch Moosman06 erledigt
|
|
|
- 5. diese Vektoren in einem diskriminitativen Klassifikator ( z.B. SLR oder Randomized Forests) zusammen mit ihrer Klassenzugehörigkeit anlernen
|
|
|
- */
|
|
|
-#ifdef DEBUG
|
|
|
- cerr << "SemSegCsurka2:: training starts" << endl;
|
|
|
-#endif
|
|
|
-
|
|
|
- Examples examples;
|
|
|
- examples.filename = "training";
|
|
|
- // the used features
|
|
|
- LocalFeatureRepresentation *cSIFT = new LFColorSande ( conf, "LFColorSandeTrain" );
|
|
|
- // write the features to a file, if there isn't any to read
|
|
|
- LocalFeatureRepresentation *writeFeats = new LFWriteCache ( conf, cSIFT );
|
|
|
- // read the features from a file
|
|
|
- LocalFeatureRepresentation *getFeats = new LFReadCache ( conf, writeFeats,-1 );
|
|
|
- cout << 4 << endl;
|
|
|
- // additional Colorfeatures
|
|
|
- LFColorWeijer lcw(conf);
|
|
|
- int lfdimension = -1;
|
|
|
-
|
|
|
- const LabeledSet train = * ( *md ) ["train"];
|
|
|
- const LabeledSet *trainp = &train;
|
|
|
-
|
|
|
- ////////////////////////
|
|
|
- // Merkmale berechnen //
|
|
|
- ////////////////////////
|
|
|
-
|
|
|
- set<int> forbidden_classes;
|
|
|
-
|
|
|
- std::string forbidden_classes_s = conf->gS ( "analysis", "donttrain", "" );
|
|
|
- if ( forbidden_classes_s == "" )
|
|
|
- {
|
|
|
- forbidden_classes_s = conf->gS ( "analysis", "forbidden_classes", "" );
|
|
|
- }
|
|
|
- cn.getSelection ( forbidden_classes_s, forbidden_classes );
|
|
|
- cerr << "forbidden: " << forbidden_classes_s << endl;
|
|
|
-
|
|
|
- ProgressBar pb ( "Local Feature Extraction" );
|
|
|
- pb.show();
|
|
|
-
|
|
|
- int imgnb = 0;
|
|
|
-#if 0
|
|
|
- LOOP_ALL_S ( *trainp )
|
|
|
- {
|
|
|
- //EACH_S(classno, currentFile);
|
|
|
- EACH_INFO ( classno,info );
|
|
|
-
|
|
|
- pb.update ( trainp->count() );
|
|
|
-
|
|
|
- NICE::Image img;
|
|
|
-
|
|
|
- std::string currentFile = info.img();
|
|
|
-
|
|
|
- CachedExample *ce = new CachedExample ( currentFile );
|
|
|
-
|
|
|
- const LocalizationResult *locResult = info.localization();
|
|
|
- if ( locResult->size() <= 0 )
|
|
|
- {
|
|
|
- fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
- currentFile.c_str() );
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- fprintf ( stderr, "SemSegCsurka2: Collecting pixel examples from localization info: %s\n",
|
|
|
- currentFile.c_str() );
|
|
|
-
|
|
|
- int xsize, ysize;
|
|
|
- ce->getImageSize ( xsize, ysize );
|
|
|
-
|
|
|
- NICE::Image pixelLabels (xsize, ysize);
|
|
|
- pixelLabels.set(0);
|
|
|
- locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
-
|
|
|
- try {
|
|
|
- img = Preprocess::ReadImgAdv ( currentFile.c_str() );
|
|
|
- } catch (Exception) {
|
|
|
- cerr << "SemSegCsurka2: error opening image file <" << currentFile << ">" << endl;
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- Globals::setCurrentImgFN ( currentFile );
|
|
|
-
|
|
|
- VVector features;
|
|
|
- VVector cfeatures;
|
|
|
- VVector positions;
|
|
|
-
|
|
|
- NICE::ColorImage cimg(currentFile);
|
|
|
-
|
|
|
- getFeats->extractFeatures ( img, features, positions );
|
|
|
-
|
|
|
- if(usecolorfeats)
|
|
|
- lcw.getDescriptors(cimg, cfeatures, positions);
|
|
|
-
|
|
|
- int j = 0;
|
|
|
-
|
|
|
- for ( VVector::const_iterator i = features.begin();
|
|
|
- i != features.end();
|
|
|
- i++,j++ )
|
|
|
- {
|
|
|
- const NICE::Vector & x = *i;
|
|
|
- classno = pixelLabels.getPixel(( int )positions[j][0], ( int )positions[j][1] );
|
|
|
-
|
|
|
- if ( forbidden_classes.find ( classno ) != forbidden_classes.end() )
|
|
|
- continue;
|
|
|
-
|
|
|
- if ( lfdimension < 0 )
|
|
|
- lfdimension = ( int ) x.size();
|
|
|
- else
|
|
|
- assert ( lfdimension == ( int ) x.size() );
|
|
|
-
|
|
|
- NICE::Vector *v = new NICE::Vector ( x );
|
|
|
-
|
|
|
- if(usecolorfeats && !usepca)
|
|
|
- v->append(cfeatures[j]);
|
|
|
-
|
|
|
- Example example ( v );
|
|
|
- example.position = imgnb;
|
|
|
- examples.push_back (
|
|
|
- pair<int, Example> ( classno, example ) );
|
|
|
- }
|
|
|
- features.clear();
|
|
|
- positions.clear();
|
|
|
- delete ce;
|
|
|
- imgnb++;
|
|
|
- }
|
|
|
-
|
|
|
- pb.hide();
|
|
|
-#endif
|
|
|
-
|
|
|
- examples.clear();
|
|
|
-
|
|
|
- readex("/home/staff/froehlich/fernerkundung/irene/sattrain.feats", examples);
|
|
|
-
|
|
|
- lfdimension = (int)examples[0].second.vec->size();
|
|
|
- //////////////////
|
|
|
- // PCA anwenden //
|
|
|
- //////////////////
|
|
|
-
|
|
|
- if ( usepca )
|
|
|
- {
|
|
|
- if ( !read_cache )
|
|
|
- {
|
|
|
- initializePCA ( examples );
|
|
|
- }
|
|
|
- doPCA ( examples );
|
|
|
- lfdimension = dim;
|
|
|
- }
|
|
|
-
|
|
|
- /////////////////////////////////////////////////////
|
|
|
- // Low-Level Features in High-Level transformieren //
|
|
|
- /////////////////////////////////////////////////////
|
|
|
-
|
|
|
- int hlfdimension = lfdimension;
|
|
|
-
|
|
|
- if(norm)
|
|
|
- normalize(examples);
|
|
|
-
|
|
|
- if ( usegmm )
|
|
|
- {
|
|
|
- if(!usepca && !norm)
|
|
|
- normalize(examples);
|
|
|
- g = new GMM ( conf,gaussians );
|
|
|
-
|
|
|
- if ( dogmm || !g->loadData ( cache+"/gmm" ) )
|
|
|
- {
|
|
|
- g->computeMixture ( examples );
|
|
|
- if ( save_cache )
|
|
|
- g->saveData ( cache+"/gmm" );
|
|
|
- }
|
|
|
-
|
|
|
- hlfdimension = gaussians;
|
|
|
-
|
|
|
- if ( usefisher )
|
|
|
- hlfdimension = gaussians*2*dim;
|
|
|
- }
|
|
|
-
|
|
|
- if ( usekmeans )
|
|
|
- {
|
|
|
- if(!usepca || norm)
|
|
|
- normalize(examples);
|
|
|
- k = new KMeansOnline ( gaussians );
|
|
|
-
|
|
|
- k->cluster ( examples );
|
|
|
-
|
|
|
- hlfdimension = gaussians;
|
|
|
- }
|
|
|
-
|
|
|
- if ( usekmeans || usegmm )
|
|
|
- {
|
|
|
- examples.clear();
|
|
|
- pb.reset("Local Feature Extraction");
|
|
|
- lfdimension = -1;
|
|
|
- pb.update ( trainp->count() );
|
|
|
- LOOP_ALL_S ( *trainp )
|
|
|
- {
|
|
|
- EACH_INFO ( classno,info );
|
|
|
-
|
|
|
- pb.update ( trainp->count() );
|
|
|
-
|
|
|
- NICE::Image img;
|
|
|
-
|
|
|
- std::string currentFile = info.img();
|
|
|
-
|
|
|
- CachedExample *ce = new CachedExample ( currentFile );
|
|
|
-
|
|
|
- const LocalizationResult *locResult = info.localization();
|
|
|
- if ( locResult->size() <= 0 )
|
|
|
- {
|
|
|
- fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
- currentFile.c_str() );
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- fprintf ( stderr, "SemSegCsurka2: Collecting pixel examples from localization info: %s\n",
|
|
|
- currentFile.c_str() );
|
|
|
-
|
|
|
- int xsize, ysize;
|
|
|
- ce->getImageSize ( xsize, ysize );
|
|
|
-
|
|
|
- NICE::Image pixelLabels (xsize, ysize);
|
|
|
- pixelLabels.set(0);
|
|
|
- locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
-
|
|
|
- try{
|
|
|
- img = Preprocess::ReadImgAdv ( currentFile.c_str() );
|
|
|
- }
|
|
|
- catch (Exception){
|
|
|
- cerr << "SemSegCsurka2: error opening image file <" << currentFile << ">" << endl;
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- Globals::setCurrentImgFN ( currentFile );
|
|
|
-
|
|
|
- VVector features;
|
|
|
- VVector cfeatures;
|
|
|
- VVector positions;
|
|
|
-
|
|
|
- NICE::ColorImage cimg(currentFile);
|
|
|
-
|
|
|
- getFeats->extractFeatures ( img, features, positions );
|
|
|
-
|
|
|
- if(usecolorfeats)
|
|
|
- lcw.getDescriptors(cimg, cfeatures, positions);
|
|
|
-
|
|
|
- int j = 0;
|
|
|
-
|
|
|
- Examples tmpex;
|
|
|
-
|
|
|
- for ( VVector::const_iterator i = features.begin();
|
|
|
- i != features.end();
|
|
|
- i++,j++ )
|
|
|
- {
|
|
|
-
|
|
|
- const NICE::Vector & x = *i;
|
|
|
-
|
|
|
- classno = pixelLabels.getPixel(( int )positions[j][0], ( int )positions[j][1] );
|
|
|
-
|
|
|
- if ( forbidden_classes.find ( classno ) != forbidden_classes.end() )
|
|
|
- continue;
|
|
|
-
|
|
|
- if ( lfdimension < 0 )
|
|
|
- lfdimension = ( int ) x.size();
|
|
|
- else
|
|
|
- assert ( lfdimension == ( int ) x.size() );
|
|
|
-
|
|
|
- NICE::Vector *v = new NICE::Vector ( x );
|
|
|
- if(usecolorfeats)
|
|
|
- v->append(cfeatures[j]);
|
|
|
-
|
|
|
- Example example ( v );
|
|
|
- example.position = imgnb;
|
|
|
- example.x = ( int ) positions[j][0];
|
|
|
- example.y = ( int )positions[j][1];
|
|
|
- example.scale = positions[j][2];
|
|
|
-
|
|
|
- tmpex.push_back ( pair<int, Example> ( classno, example ) );
|
|
|
- }
|
|
|
- tmpex.filename = currentFile;
|
|
|
- if ( usepca )
|
|
|
- {
|
|
|
- doPCA ( tmpex );
|
|
|
- }
|
|
|
-
|
|
|
- convertLowToHigh ( tmpex, anteil );
|
|
|
-
|
|
|
- smoothHL ( tmpex );
|
|
|
-
|
|
|
- for ( int i = 0; i < (int)tmpex.size(); i++ )
|
|
|
- {
|
|
|
- examples.push_back ( pair<int, Example> ( tmpex[i].first, tmpex[i].second ) );
|
|
|
- }
|
|
|
-
|
|
|
- tmpex.clear();
|
|
|
-
|
|
|
- features.clear();
|
|
|
- positions.clear();
|
|
|
- delete ce;
|
|
|
- imgnb++;
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- pb.hide();
|
|
|
- }
|
|
|
- ////////////////////////////
|
|
|
- // Klassifikator anlernen //
|
|
|
- ////////////////////////////
|
|
|
- FeaturePool fp;
|
|
|
-
|
|
|
- Feature *f;
|
|
|
-
|
|
|
- if ( usegmm || usekmeans )
|
|
|
- f = new SparseVectorFeature ( hlfdimension );
|
|
|
- else
|
|
|
- f = new VectorFeature ( hlfdimension );
|
|
|
-
|
|
|
- f->explode ( fp );
|
|
|
- delete f;
|
|
|
- if(usecolorfeats && !( usekmeans || usegmm ))
|
|
|
- {
|
|
|
- int dimension = hlfdimension+11;
|
|
|
- for ( int i = hlfdimension ; i < dimension ; i++ )
|
|
|
- {
|
|
|
- VectorFeature *f = new VectorFeature ( dimension );
|
|
|
- f->feature_index = i;
|
|
|
- fp.addFeature(f, 1.0 / dimension);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-/*
|
|
|
-cout << "train classifier" << endl;
|
|
|
-fp.store(cout);
|
|
|
-getchar();
|
|
|
-for(int z = 0; z < examples.size(); z++)
|
|
|
-{
|
|
|
-cout << "examples.size() " << examples.size() << endl;
|
|
|
-cout << "class: " << examples[z].first << endl;
|
|
|
- cout << *examples[z].second.vec << endl;
|
|
|
- getchar();
|
|
|
-}*/
|
|
|
- if(classifier != NULL)
|
|
|
- classifier->train ( fp, examples );
|
|
|
- else
|
|
|
- {
|
|
|
- LabeledSetVector lvec;
|
|
|
- convertExamplesToLSet(examples, lvec);
|
|
|
- vclassifier->teach(lvec);
|
|
|
- if(usegmm)
|
|
|
- convertLSetToSparseExamples(examples, lvec);
|
|
|
- else
|
|
|
- convertLSetToExamples(examples, lvec);
|
|
|
- vclassifier->finishTeaching();
|
|
|
- }
|
|
|
-
|
|
|
- fp.destroy();
|
|
|
-
|
|
|
- if ( save_cache )
|
|
|
- {
|
|
|
- if(classifier != NULL)
|
|
|
- classifier->save ( cache+"/fpcrf.data" );
|
|
|
- else
|
|
|
- vclassifier->save ( cache+"/veccl.data" );
|
|
|
- }
|
|
|
- ////////////
|
|
|
- //clean up//
|
|
|
- ////////////
|
|
|
-
|
|
|
- for ( int i = 0; i < ( int ) examples.size(); i++ )
|
|
|
- {
|
|
|
- examples[i].second.clean();
|
|
|
- }
|
|
|
-
|
|
|
- examples.clear();
|
|
|
-
|
|
|
- delete cSIFT;
|
|
|
-
|
|
|
- delete writeFeats;
|
|
|
-
|
|
|
- delete getFeats;
|
|
|
- trainpostprocess ( md );
|
|
|
-
|
|
|
- cerr << "SemSeg training finished" << endl;
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka2::trainpostprocess ( const MultiDataset *md )
|
|
|
-{
|
|
|
- cout<< "start postprocess" << endl;
|
|
|
- ////////////////////////////
|
|
|
- // Postprocess trainieren //
|
|
|
- ////////////////////////////
|
|
|
- const LabeledSet train = * ( *md ) ["train"];
|
|
|
- const LabeledSet *trainp = &train;
|
|
|
-
|
|
|
- if ( userellocprior || srg != NULL || gcopt !=NULL )
|
|
|
- {
|
|
|
- if ( userellocprior )
|
|
|
- relloc->setClassNo ( cn.numClasses() );
|
|
|
-
|
|
|
- if ( gcopt !=NULL )
|
|
|
- {
|
|
|
- gcopt->setClassNo ( cn.numClasses() );
|
|
|
- }
|
|
|
-
|
|
|
- ProgressBar pb ( "learn relative location prior maps" );
|
|
|
- pb.show();
|
|
|
- LOOP_ALL_S ( *trainp ) // für alle Bilder den ersten Klassifikationsschritt durchführen um den zweiten Klassifikator anzutrainieren
|
|
|
- {
|
|
|
- EACH_INFO ( classno,info );
|
|
|
-
|
|
|
- pb.update ( trainp->count() );
|
|
|
-
|
|
|
- NICE::Image img;
|
|
|
-
|
|
|
- std::string currentFile = info.img();
|
|
|
- Globals::setCurrentImgFN ( currentFile );
|
|
|
- CachedExample *ce = new CachedExample ( currentFile );
|
|
|
-
|
|
|
- const LocalizationResult *locResult = info.localization();
|
|
|
- if ( locResult->size() <= 0 )
|
|
|
- {
|
|
|
- fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
- currentFile.c_str() );
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- fprintf ( stderr, "SemSegCsurka2: Collecting pixel examples from localization info: %s\n",
|
|
|
- currentFile.c_str() );
|
|
|
-
|
|
|
- int xsize, ysize;
|
|
|
- ce->getImageSize ( xsize, ysize );
|
|
|
-
|
|
|
- NICE::Image pixelLabels (xsize, ysize);
|
|
|
- pixelLabels.set(0);
|
|
|
- locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
-
|
|
|
- try{
|
|
|
- img = Preprocess::ReadImgAdv ( currentFile.c_str() );
|
|
|
- }
|
|
|
- catch(Exception)
|
|
|
- {
|
|
|
- cerr << "SemSegCsurka2: error opening image file <" << currentFile << ">" << endl;
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- //Regionen ermitteln
|
|
|
- NICE::Matrix mask;
|
|
|
-
|
|
|
- int regionsize = seg->segRegions ( img,mask );
|
|
|
-
|
|
|
- Examples regions;
|
|
|
-
|
|
|
- vector<vector<int> > hists;
|
|
|
-
|
|
|
- for ( int i = 0; i < regionsize; i++ )
|
|
|
- {
|
|
|
- Example tmp;
|
|
|
- regions.push_back ( pair<int, Example> ( 0, tmp ) );
|
|
|
- vector<int> hist ( cn.numClasses(), 0 );
|
|
|
- hists.push_back ( hist );
|
|
|
- }
|
|
|
-
|
|
|
- for ( int x = 0; x < xsize; x++ )
|
|
|
- {
|
|
|
- for ( int y = 0; y < ysize; y++ )
|
|
|
- {
|
|
|
- int numb = mask(x,y);
|
|
|
- regions[numb].second.x += x;
|
|
|
- regions[numb].second.y += y;
|
|
|
- regions[numb].second.weight += 1.0;
|
|
|
- hists[numb][pixelLabels.getPixel(x,y)]++;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- for ( int i = 0; i < regionsize; i++ )
|
|
|
- {
|
|
|
- regions[i].second.x /= ( int ) regions[i].second.weight;
|
|
|
- regions[i].second.y /= ( int ) regions[i].second.weight;
|
|
|
-
|
|
|
- int maxval = -numeric_limits<int>::max();
|
|
|
- int maxpos = -1;
|
|
|
- int secondpos = -1;
|
|
|
- for ( int k = 0; k < ( int ) hists[i].size(); k++ )
|
|
|
- {
|
|
|
- if ( maxval <hists[i][k] )
|
|
|
- {
|
|
|
- maxval = hists[i][k];
|
|
|
- secondpos = maxpos;
|
|
|
- maxpos = k;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- if ( cn.text ( maxpos ) == "various" )
|
|
|
- regions[i].first = secondpos;
|
|
|
- else
|
|
|
- regions[i].first = maxpos;
|
|
|
-
|
|
|
- }
|
|
|
- if ( userellocprior )
|
|
|
- relloc->trainPriorsMaps ( regions, xsize, ysize );
|
|
|
-
|
|
|
- if ( srg != NULL )
|
|
|
- srg->trainShape ( regions, mask );
|
|
|
-
|
|
|
- if ( gcopt !=NULL )
|
|
|
- gcopt->trainImage ( regions, mask );
|
|
|
-
|
|
|
- delete ce;
|
|
|
-
|
|
|
- }
|
|
|
- pb.hide();
|
|
|
- if ( userellocprior )
|
|
|
- relloc->finishPriorsMaps ( cn );
|
|
|
-
|
|
|
- if ( srg != NULL )
|
|
|
- srg->finishShape ( cn );
|
|
|
-
|
|
|
- if ( gcopt != NULL )
|
|
|
- gcopt->finishPP ( cn );
|
|
|
- }
|
|
|
- if ( userellocprior )
|
|
|
- {
|
|
|
- ProgressBar pb ( "learn relative location classifier" );
|
|
|
- pb.show();
|
|
|
-
|
|
|
- int nummer = 0;
|
|
|
- LOOP_ALL_S ( *trainp ) // für alle Bilder den ersten Klassifikationsschritt durchführen um den zweiten Klassifikator anzutrainieren
|
|
|
- {
|
|
|
- //EACH_S(classno, currentFile);
|
|
|
- EACH_INFO ( classno,info );
|
|
|
- nummer++;
|
|
|
- pb.update ( trainp->count() );
|
|
|
-
|
|
|
- NICE::Image img;
|
|
|
- std::string currentFile = info.img();
|
|
|
-
|
|
|
- CachedExample *ce = new CachedExample ( currentFile );
|
|
|
-
|
|
|
- const LocalizationResult *locResult = info.localization();
|
|
|
- if ( locResult->size() <= 0 )
|
|
|
- {
|
|
|
- fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
- currentFile.c_str() );
|
|
|
- continue;
|
|
|
- }
|
|
|
-
|
|
|
- fprintf ( stderr, "SemSegCsurka2: Collecting pixel examples from localization info: %s\n",
|
|
|
- currentFile.c_str() );
|
|
|
-
|
|
|
- int xsize, ysize;
|
|
|
- ce->getImageSize ( xsize, ysize );
|
|
|
-
|
|
|
- NICE::Image pixelLabels (xsize, ysize);
|
|
|
- pixelLabels.set(0);
|
|
|
- locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
|
|
|
-
|
|
|
- try{
|
|
|
- img = Preprocess::ReadImgAdv ( currentFile.c_str() );
|
|
|
- }
|
|
|
- catch(Exception)
|
|
|
- {
|
|
|
- cerr << "SemSegCsurka2: error opening image file <" << currentFile << ">" << endl;
|
|
|
- continue;
|
|
|
- }
|
|
|
- Globals::setCurrentImgFN ( currentFile );
|
|
|
-
|
|
|
- NICE::Image segresult;
|
|
|
-
|
|
|
- GenericImage<double> probabilities ( xsize,ysize,classno,true );
|
|
|
-
|
|
|
- Examples regions;
|
|
|
-
|
|
|
- NICE::Matrix mask;
|
|
|
-
|
|
|
- if ( savesteps )
|
|
|
- {
|
|
|
- std::ostringstream s1;
|
|
|
- s1 << cache << "/rlpsave/" << nummer;
|
|
|
-
|
|
|
- std::string filename = s1.str();
|
|
|
- s1 << ".probs";
|
|
|
-
|
|
|
- std::string fn2 = s1.str();
|
|
|
-
|
|
|
- FILE *file;
|
|
|
- file = fopen ( filename.c_str(),"r" );
|
|
|
-
|
|
|
- if ( file==NULL )
|
|
|
- {
|
|
|
- //berechnen
|
|
|
- classifyregions ( ce, segresult, probabilities, regions, mask );
|
|
|
- //schreiben
|
|
|
- ofstream fout ( filename.c_str(), ios::app );
|
|
|
- fout << regions.size() << endl;
|
|
|
- for ( int i = 0; i < ( int ) regions.size(); i++ )
|
|
|
- {
|
|
|
- regions[i].second.store ( fout );
|
|
|
- fout << regions[i].first << endl;
|
|
|
- }
|
|
|
- fout.close();
|
|
|
- probabilities.store ( fn2 );
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- //lesen
|
|
|
- ifstream fin ( filename.c_str() );
|
|
|
- int size;
|
|
|
- fin >> size;
|
|
|
-
|
|
|
- for ( int i = 0; i < size; i++ )
|
|
|
- {
|
|
|
- Example ex;
|
|
|
- ex.restore ( fin );
|
|
|
- int tmp;
|
|
|
- fin >> tmp;
|
|
|
- regions.push_back ( pair<int, Example> ( tmp, ex ) );
|
|
|
- }
|
|
|
-
|
|
|
- fin.close();
|
|
|
-
|
|
|
- probabilities.restore ( fn2 );
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
- classifyregions ( ce, segresult, probabilities, regions, mask );
|
|
|
- }
|
|
|
-
|
|
|
- relloc->trainClassifier ( regions, probabilities );
|
|
|
-
|
|
|
- delete ce;
|
|
|
-
|
|
|
- }
|
|
|
- relloc->finishClassifier();
|
|
|
- pb.hide();
|
|
|
-
|
|
|
- relloc->save ( cache+"/rlp" );
|
|
|
- }
|
|
|
- cout << "finished postprocess" << endl;
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka2::classifyregions ( CachedExample *ce, NICE::Image & segresult, GenericImage<double> & probabilities, Examples &Regionen, NICE::Matrix & mask )
|
|
|
-{
|
|
|
- /* die einzelnen Testschritte:
|
|
|
- 1.x auf dem Testbild alle SIFT Merkmale an den Gitterpunkten bei allen Auflösungen bestimmen
|
|
|
- 2.x für jedes SIFT-Merkmal einen Vektor erstellen, der an der Stelle i die Wahrscheinlichkeit enthällt zur Verteilung i des GMM
|
|
|
- 3.x diese Vektoren klassifizieren, so dass für jede Klasse die Wahrscheinlichkeit gespeichert wird
|
|
|
- 4.x für jeden Pixel die Wahrscheinlichkeiten mitteln aus allen Patches, in denen der Pixel vorkommt
|
|
|
- 5.x das Originalbild in homogene Bereiche segmentieren
|
|
|
- 6.x die homogenen Bereiche bekommen die gemittelten Wahrscheinlichkeiten ihrer Pixel
|
|
|
- 7. (einzelne Klassen mit einem globalen Klassifikator ausschließen)
|
|
|
- 8.x jeder Pixel bekommt die Klasse seiner Region zugeordnet
|
|
|
- */
|
|
|
-
|
|
|
- int xsize, ysize;
|
|
|
-
|
|
|
- ce->getImageSize ( xsize, ysize );
|
|
|
-
|
|
|
- probabilities.reInit ( xsize, ysize, classNames->getMaxClassno() +1, true/*allocMem*/ );
|
|
|
-
|
|
|
- segresult.resize(xsize, ysize);
|
|
|
-
|
|
|
- Examples pce;
|
|
|
-
|
|
|
- // the features to use
|
|
|
- LocalFeatureRepresentation *cSIFT = new LFColorSande ( conf, "LFColorSandeTest" );
|
|
|
-
|
|
|
- // write the features to a file, if there isn't any to read
|
|
|
- LocalFeatureRepresentation *writeFeats = new LFWriteCache ( conf, cSIFT );
|
|
|
-
|
|
|
- // read the features from a file
|
|
|
- LocalFeatureRepresentation *getFeats = new LFReadCache ( conf, writeFeats,-1 );
|
|
|
-
|
|
|
- // additional Colorfeatures
|
|
|
- LFColorWeijer lcw(conf);
|
|
|
-
|
|
|
- NICE::Image img;
|
|
|
-
|
|
|
- std::string currentFile = Globals::getCurrentImgFN();
|
|
|
-
|
|
|
- try
|
|
|
- {
|
|
|
- img = Preprocess::ReadImgAdv ( currentFile.c_str() );
|
|
|
- }
|
|
|
- catch(Exception)
|
|
|
- {
|
|
|
- cerr << "SemSegCsurka2: error opening image file <" << currentFile << ">" << endl;
|
|
|
- }
|
|
|
-
|
|
|
- VVector features;
|
|
|
- VVector cfeatures;
|
|
|
- VVector positions;
|
|
|
- NICE::ColorImage cimg(currentFile);
|
|
|
- //getFeats->extractFeatures ( img, features, positions );
|
|
|
-
|
|
|
- readFeats(features,positions,"/home/staff/froehlich/fernerkundung/irene/sattest.feats","/home/staff/froehlich/fernerkundung/irene/sattest.coords");
|
|
|
-
|
|
|
- if(usecolorfeats)
|
|
|
- lcw.getDescriptors(cimg, cfeatures, positions);
|
|
|
-
|
|
|
- set<double> scales;
|
|
|
-
|
|
|
- int j = 0;
|
|
|
- int lfdimension = -1;
|
|
|
- for ( VVector::const_iterator i = features.begin();
|
|
|
- i != features.end();
|
|
|
- i++,j++ )
|
|
|
- {
|
|
|
- const NICE::Vector & x = *i;
|
|
|
-
|
|
|
- if ( lfdimension < 0 ) lfdimension = ( int ) x.size();
|
|
|
- else assert ( lfdimension == ( int ) x.size() );
|
|
|
-
|
|
|
- NICE::Vector *v = new NICE::Vector ( x );
|
|
|
-
|
|
|
- if(usecolorfeats)
|
|
|
- v->append(cfeatures[j]);
|
|
|
-
|
|
|
- Example tmp = Example ( v );
|
|
|
- tmp.x = ( int )positions[j][0];
|
|
|
- tmp.y = ( int ) positions[j][1];
|
|
|
- tmp.width = ( int ) ( 16.0*positions[j][2] );
|
|
|
- tmp.height = tmp.width;
|
|
|
- tmp.scale = positions[j][2];
|
|
|
- scales.insert ( positions[j][2] );
|
|
|
- pce.push_back ( pair<int, Example> ( 0, tmp ) );
|
|
|
- }
|
|
|
-
|
|
|
- //////////////////
|
|
|
- // PCA anwenden //
|
|
|
- //////////////////
|
|
|
- pce.filename = currentFile;
|
|
|
- if ( usepca )
|
|
|
- {
|
|
|
- doPCA ( pce );
|
|
|
- lfdimension = dim;
|
|
|
- }
|
|
|
-
|
|
|
- //////////////////
|
|
|
- // BoV anwenden //
|
|
|
- //////////////////
|
|
|
- if(norm)
|
|
|
- normalize(pce);
|
|
|
- if ( usegmm || usekmeans )
|
|
|
- {
|
|
|
- if(!usepca && !norm)
|
|
|
- normalize(pce);
|
|
|
- convertLowToHigh ( pce );
|
|
|
- smoothHL ( pce );
|
|
|
- lfdimension = gaussians;
|
|
|
- }
|
|
|
-
|
|
|
- /////////////////////////////////////////
|
|
|
- // Wahrscheinlichkeitskarten erstellen //
|
|
|
- /////////////////////////////////////////
|
|
|
-
|
|
|
- int klassen = probabilities.numChannels;
|
|
|
- GenericImage<double> preMap ( xsize,ysize,klassen*scales.size(),true );
|
|
|
-
|
|
|
- long int offset = 0;
|
|
|
-
|
|
|
- // initialisieren
|
|
|
- for ( int y = 0 ; y < ysize ; y++ )
|
|
|
- for ( int x = 0 ; x < xsize ; x++,offset++ )
|
|
|
- {
|
|
|
- // alles zum Hintergrund machen
|
|
|
- segresult.setPixel(x,y,0);
|
|
|
- // Die Wahrscheinlichkeitsmaps auf 0 initialisieren
|
|
|
- for ( int i = 0 ; i < ( int ) probabilities.numChannels; i++ )
|
|
|
- {
|
|
|
- probabilities.data[i][offset] = 0.0;
|
|
|
- }
|
|
|
- for ( int j = 0; j < ( int ) preMap.numChannels; j++ )
|
|
|
- {
|
|
|
- preMap.data[j][offset]=0.0;
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- // Die Wahrscheinlichkeitsmaps mit den einzelnen Wahrscheinlichkeiten je Skalierung füllen
|
|
|
-
|
|
|
- int scalesize = scales.size();
|
|
|
-
|
|
|
- // Globale Häufigkeiten akkumulieren
|
|
|
- FullVector fV ( ( int ) probabilities.numChannels );
|
|
|
-
|
|
|
- for ( int i = 0; i < fV.size(); i++ )
|
|
|
- fV[i] = 0.0;
|
|
|
-
|
|
|
- if(classifier != NULL)
|
|
|
- {
|
|
|
-#pragma omp parallel for
|
|
|
- for ( int s = 0; s < scalesize; s++ )
|
|
|
- {
|
|
|
-#pragma omp parallel for
|
|
|
- for ( int i = s; i < ( int ) pce.size(); i+=scalesize )
|
|
|
- {
|
|
|
- ClassificationResult r = classifier->classify ( pce[i].second );
|
|
|
- for ( int j = 0 ; j < ( int ) probabilities.numChannels; j++ )
|
|
|
- {
|
|
|
- fV[j] += r.scores[j];
|
|
|
- preMap.set ( pce[i].second.x,pce[i].second.y,r.scores[j],j+s*klassen );
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
-#pragma omp parallel for
|
|
|
- for ( int s = 0; s < scalesize; s++ )
|
|
|
- {
|
|
|
-#pragma omp parallel for
|
|
|
- for ( int i = s; i < ( int ) pce.size(); i+=scalesize )
|
|
|
- {
|
|
|
- ClassificationResult r = vclassifier->classify ( *(pce[i].second.vec) );
|
|
|
- for ( int j = 0 ; j < ( int ) probabilities.numChannels; j++ )
|
|
|
- {
|
|
|
- fV[j] += r.scores[j];
|
|
|
- preMap.set ( pce[i].second.x,pce[i].second.y,r.scores[j],j+s*klassen );
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- vector<double> scalesVec;
|
|
|
- for ( set<double>::const_iterator iter = scales.begin();
|
|
|
- iter != scales.end();
|
|
|
- ++iter )
|
|
|
- {
|
|
|
- scalesVec.push_back ( *iter );
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // Gaußfiltern
|
|
|
- for ( int s = 0; s < scalesize; s++ )
|
|
|
- {
|
|
|
- double sigma = sigmaweight*16.0*scalesVec[s];
|
|
|
- cerr << "sigma: " << sigma << endl;
|
|
|
-#pragma omp parallel for
|
|
|
- for ( int i = 0; i < klassen; i++ )
|
|
|
- {
|
|
|
- int pos = i+s*klassen;
|
|
|
-
|
|
|
- double maxval = preMap.data[pos][0];
|
|
|
- double minval = preMap.data[pos][0];
|
|
|
-
|
|
|
- for ( int z = 1; z < xsize*ysize; z++ )
|
|
|
- {
|
|
|
- maxval = std::max ( maxval, preMap.data[pos][z] );
|
|
|
- minval = std::min ( minval, preMap.data[pos][z] );
|
|
|
- }
|
|
|
-
|
|
|
- NICE::FloatImage dblImg( xsize, ysize);
|
|
|
- NICE::FloatImage gaussImg( xsize, ysize);
|
|
|
-
|
|
|
- long int offset2 = 0;
|
|
|
- for ( int y = 0; y < ysize; y++ )
|
|
|
- {
|
|
|
- for ( int x = 0; x < xsize; x++, offset2++ )
|
|
|
- {
|
|
|
- dblImg.setPixel(x,y,preMap.data[pos][offset2]);
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- FourierLibrary::gaussFilterD ( dblImg, gaussImg, sigma );
|
|
|
-
|
|
|
- offset2 = 0;
|
|
|
- for ( int y = 0; y < ysize; y++ )
|
|
|
- {
|
|
|
- for ( int x = 0; x < xsize; x++, offset2++ )
|
|
|
- {
|
|
|
- preMap.data[pos][offset2]=gaussImg.getPixel(x,y);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
-
|
|
|
- // Zusammenfassen und auswerten
|
|
|
-#pragma omp parallel for
|
|
|
- for ( int x = 0; x < xsize; x++ )
|
|
|
- {
|
|
|
- for ( int y = 0; y < ysize; y++ )
|
|
|
- {
|
|
|
- for ( int j = 0 ; j < ( int ) probabilities.numChannels; j++ )
|
|
|
- {
|
|
|
- double prob = 0.0;
|
|
|
- for ( int s = 0; s < ( int ) scalesize; s++ )
|
|
|
- {
|
|
|
-
|
|
|
- prob+=preMap.get ( x,y,j+s*klassen );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- double val = prob / ( double ) ( scalesize );
|
|
|
- probabilities.set ( x,y,val, j );
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#undef VISSEMSEG
|
|
|
-#ifdef VISSEMSEG
|
|
|
-// showImage(img);
|
|
|
- for ( int j = 0 ; j < ( int ) probabilities.numChannels; j++ )
|
|
|
- {
|
|
|
- cout << "klasse: " << j << endl;//" " << cn.text ( j ) << endl;
|
|
|
-
|
|
|
- NICE::Matrix tmp ( probabilities.ysize, probabilities.xsize );
|
|
|
- double maxval = 0.0;
|
|
|
- for ( int y = 0; y < probabilities.ysize; y++ )
|
|
|
- for ( int x = 0; x < probabilities.xsize; x++ )
|
|
|
- {
|
|
|
- double val = probabilities.get ( x,y,j );
|
|
|
- tmp(y, x) = val;
|
|
|
- maxval = std::max ( val, maxval );
|
|
|
- }
|
|
|
-
|
|
|
- NICE::ColorImage imgrgb (probabilities.xsize, probabilities.ysize);
|
|
|
- ICETools::convertToRGB ( tmp, imgrgb );
|
|
|
-
|
|
|
- cout << "maxval = " << maxval << " for class " << j << endl; //cn.text ( j ) << endl;
|
|
|
-
|
|
|
- //Show ( ON, imgrgb, cn.text ( j ) );
|
|
|
- showImage(imgrgb, "Ergebnis");
|
|
|
- //imgrgb.Write ( "tmp.ppm" );
|
|
|
-
|
|
|
- //getchar();
|
|
|
- }
|
|
|
-#endif
|
|
|
- if ( useregions )
|
|
|
- {
|
|
|
- if ( bestclasses > 0 )
|
|
|
- {
|
|
|
- PSSImageLevelPrior pss ( 0, bestclasses, 0.2 );
|
|
|
- pss.setPrior ( fV );
|
|
|
- pss.postprocess ( segresult, probabilities );
|
|
|
- }
|
|
|
-
|
|
|
- //Regionen ermitteln
|
|
|
-
|
|
|
- int regionsize = seg->segRegions ( img, mask);
|
|
|
-
|
|
|
- Regionen.clear();
|
|
|
- vector<vector <double> > regionprob;
|
|
|
-
|
|
|
- // Wahrscheinlichkeiten für jede Region initialisieren
|
|
|
- for ( int i = 0; i < regionsize; i++ )
|
|
|
- {
|
|
|
- vector<double> tmp;
|
|
|
- for ( int j = 0; j < ( int ) probabilities.numChannels; j++ )
|
|
|
- {
|
|
|
- tmp.push_back ( 0.0 );
|
|
|
- }
|
|
|
- regionprob.push_back ( tmp );
|
|
|
- Regionen.push_back ( pair<int, Example> ( 0, Example() ) );
|
|
|
- }
|
|
|
-
|
|
|
- // Wahrscheinlichkeiten für Regionen bestimmen
|
|
|
- for ( int x = 0; x < xsize; x++ )
|
|
|
- {
|
|
|
- for ( int y = 0; y < ysize; y++ )
|
|
|
- {
|
|
|
- for ( int j = 0 ; j < ( int ) probabilities.numChannels; j++ )
|
|
|
- {
|
|
|
- double val = probabilities.get ( x,y,j );
|
|
|
- int pos = mask(x,y);
|
|
|
- Regionen[pos].second.weight+=1.0;
|
|
|
- Regionen[pos].second.x += x;
|
|
|
- Regionen[pos].second.y += y;
|
|
|
- regionprob[pos][j] += val;
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-/*
|
|
|
-cout << "regions: " << regionsize << endl;
|
|
|
-cout << "outfeats: " << endl;
|
|
|
-for(int j = 0; j < regionprob.size(); j++)
|
|
|
-{
|
|
|
- for(int i = 0; i < regionprob[j].size(); i++)
|
|
|
- {
|
|
|
- cout << regionprob[j][i] << " ";
|
|
|
- }
|
|
|
- cout << endl;
|
|
|
-}
|
|
|
-cout << endl;
|
|
|
-getchar();*/
|
|
|
-
|
|
|
- // beste Wahrscheinlichkeit je Region wählen
|
|
|
- for ( int i = 0; i < regionsize; i++ )
|
|
|
- {
|
|
|
- Regionen[i].second.x /= ( int ) Regionen[i].second.weight;
|
|
|
- Regionen[i].second.y /= ( int ) Regionen[i].second.weight;
|
|
|
- double maxval = 0.0;
|
|
|
- int maxpos = 0;
|
|
|
-
|
|
|
- for ( int j = 0 ; j < ( int ) regionprob[i].size(); j++ )
|
|
|
- {
|
|
|
- regionprob[i][j] /= Regionen[i].second.weight;
|
|
|
-
|
|
|
- if ( maxval < regionprob[i][j] )
|
|
|
- {
|
|
|
- maxval = regionprob[i][j];
|
|
|
- maxpos = j;
|
|
|
- }
|
|
|
- probabilities.set (Regionen[i].second.x,Regionen[i].second.y,regionprob[i][j], j );
|
|
|
- }
|
|
|
-
|
|
|
- Regionen[i].first = maxpos;
|
|
|
- }
|
|
|
-
|
|
|
- // Pixel jeder Region labeln
|
|
|
- for ( int y = 0; y < (int)mask.cols(); y++ )
|
|
|
- {
|
|
|
- for ( int x = 0; x < (int)mask.rows(); x++ )
|
|
|
- {
|
|
|
- int pos = mask(x,y);
|
|
|
- segresult.setPixel(x,y,Regionen[pos].first);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
- else
|
|
|
- {
|
|
|
-
|
|
|
- PSSImageLevelPrior pss ( 1, 4, 0.2 );
|
|
|
- pss.setPrior ( fV );
|
|
|
- pss.postprocess ( segresult, probabilities );
|
|
|
-
|
|
|
- }
|
|
|
-
|
|
|
- // Saubermachen:
|
|
|
- for ( int i = 0; i < ( int ) pce.size(); i++ )
|
|
|
- {
|
|
|
- pce[i].second.clean();
|
|
|
- }
|
|
|
- pce.clear();
|
|
|
- delete getFeats;
|
|
|
- delete writeFeats;
|
|
|
- delete cSIFT;
|
|
|
-}
|
|
|
-
|
|
|
-void SemSegCsurka2::semanticseg ( CachedExample *ce,
|
|
|
- NICE::Image & segresult,
|
|
|
- GenericImage<double> & probabilities )
|
|
|
-{
|
|
|
-
|
|
|
- Examples regions;
|
|
|
- NICE::Matrix regionmask;
|
|
|
- classifyregions ( ce, segresult, probabilities, regions, regionmask );
|
|
|
- if ( userellocprior || srg != NULL || gcopt !=NULL )
|
|
|
- {
|
|
|
- if ( userellocprior )
|
|
|
- relloc->postprocess ( regions, probabilities );
|
|
|
-
|
|
|
- if ( srg != NULL )
|
|
|
- srg->optimizeShape ( regions, regionmask, probabilities );
|
|
|
-
|
|
|
- if ( gcopt != NULL )
|
|
|
- gcopt->optimizeImage ( regions, regionmask, probabilities );
|
|
|
-
|
|
|
- // Pixel jeder Region labeln
|
|
|
- for ( int y = 0; y < (int)regionmask.cols(); y++ )
|
|
|
- {
|
|
|
- for ( int x = 0; x < (int)regionmask.rows(); x++ )
|
|
|
- {
|
|
|
- int pos = regionmask(x,y);
|
|
|
- segresult.setPixel(x,y,regions[pos].first);
|
|
|
- }
|
|
|
- }
|
|
|
- }
|
|
|
-
|
|
|
-#ifndef NOVISUAL
|
|
|
-#undef VISSEMSEG
|
|
|
-#ifdef VISSEMSEG
|
|
|
-// showImage(img);
|
|
|
- for ( int j = 0 ; j < ( int ) probabilities.numChannels; j++ )
|
|
|
- {
|
|
|
- cout << "klasse: " << j << " " << cn.text ( j ) << endl;
|
|
|
-
|
|
|
- NICE::Matrix tmp ( probabilities.ysize, probabilities.xsize );
|
|
|
- double maxval = 0.0;
|
|
|
- for ( int y = 0; y < probabilities.ysize; y++ )
|
|
|
- for ( int x = 0; x < probabilities.xsize; x++ )
|
|
|
- {
|
|
|
- double val = probabilities.get ( x,y,j );
|
|
|
- tmp(y, x) = val;
|
|
|
- maxval = std::max ( val, maxval );
|
|
|
- }
|
|
|
-
|
|
|
- NICE::ColorImage imgrgb (probabilities.xsize, probabilities.ysize);
|
|
|
- ICETools::convertToRGB ( tmp, imgrgb );
|
|
|
-
|
|
|
- cout << "maxval = " << maxval << " for class " << cn.text ( j ) << endl;
|
|
|
-
|
|
|
- Show ( ON, imgrgb, cn.text ( j ) );
|
|
|
- imgrgb.Write ( "tmp.ppm" );
|
|
|
-
|
|
|
- getchar();
|
|
|
- }
|
|
|
-#endif
|
|
|
-#endif
|
|
|
-
|
|
|
-}
|