|
@@ -666,8 +666,6 @@ void SemSegCsurka::train ( const MultiDataset *md )
|
|
NICE::ColorImage img;
|
|
NICE::ColorImage img;
|
|
|
|
|
|
std::string currentFile = info.img();
|
|
std::string currentFile = info.img();
|
|
-
|
|
|
|
- cout << "currentfile:" << currentFile << endl;
|
|
|
|
|
|
|
|
CachedExample *ce = new CachedExample ( currentFile );
|
|
CachedExample *ce = new CachedExample ( currentFile );
|
|
|
|
|
|
@@ -1511,7 +1509,7 @@ void SemSegCsurka::classifyregions ( CachedExample *ce, NICE::Image & segresult,
|
|
{
|
|
{
|
|
ClassificationResult r = classifier->classify ( pce[i].second );
|
|
ClassificationResult r = classifier->classify ( pce[i].second );
|
|
|
|
|
|
- for ( int j = 0 ; j < r.scores.size(); j++ )
|
|
|
|
|
|
+ for ( int j = 0 ; j < fV.size(); j++ )
|
|
{
|
|
{
|
|
if ( useclass[j] == 0 )
|
|
if ( useclass[j] == 0 )
|
|
continue;
|
|
continue;
|
|
@@ -1544,7 +1542,7 @@ void SemSegCsurka::classifyregions ( CachedExample *ce, NICE::Image & segresult,
|
|
for ( int i = s; i < ( int ) pce.size(); i += scalesize )
|
|
for ( int i = s; i < ( int ) pce.size(); i += scalesize )
|
|
{
|
|
{
|
|
ClassificationResult r = vclassifier->classify ( * ( pce[i].second.vec ) );
|
|
ClassificationResult r = vclassifier->classify ( * ( pce[i].second.vec ) );
|
|
- for ( int j = 0 ; j < ( int ) r.scores.size(); j++ )
|
|
|
|
|
|
+ for ( int j = 0 ; j < ( int ) fV.size(); j++ )
|
|
{
|
|
{
|
|
if ( useclass[j] == 0 )
|
|
if ( useclass[j] == 0 )
|
|
continue;
|
|
continue;
|