|
@@ -0,0 +1,1527 @@
|
|
|
+#include <sstream>
|
|
|
+#include <iostream>
|
|
|
+
|
|
|
+#include "SemSegNoveltyBinary.h"
|
|
|
+
|
|
|
+#include <core/image/FilterT.h>
|
|
|
+#include <core/basics/numerictools.h>
|
|
|
+#include <core/basics/StringTools.h>
|
|
|
+#include <core/basics/Timer.h>
|
|
|
+
|
|
|
+#include <gp-hik-exp/GPHIKClassifierNICE.h>
|
|
|
+#include <vislearning/baselib/ICETools.h>
|
|
|
+#include <vislearning/baselib/Globals.h>
|
|
|
+#include <vislearning/features/fpfeatures/SparseVectorFeature.h>
|
|
|
+
|
|
|
+#include "segmentation/GenericRegionSegmentationMethodSelection.h"
|
|
|
+
|
|
|
+using namespace std;
|
|
|
+using namespace NICE;
|
|
|
+using namespace OBJREC;
|
|
|
+
|
|
|
+SemSegNoveltyBinary::SemSegNoveltyBinary ( const Config *conf,
|
|
|
+ const MultiDataset *md )
|
|
|
+ : SemanticSegmentation ( conf, & ( md->getClassNames ( "train" ) ) )
|
|
|
+{
|
|
|
+ this->conf = conf;
|
|
|
+
|
|
|
+ globalMaxUncert = -numeric_limits<double>::max();
|
|
|
+
|
|
|
+ string section = "SemSegNoveltyBinary";
|
|
|
+
|
|
|
+ featExtract = new LFColorWeijer ( conf );
|
|
|
+
|
|
|
+ this->reuseSegmentation = conf->gB ( "FPCPixel", "reuseSegmentation", true ); //save and read segmentation results from files
|
|
|
+ this->save_classifier = conf->gB ( "FPCPixel", "save_classifier", true ); //save the classifier to a file
|
|
|
+ this->read_classifier = conf->gB ( "FPCPixel", "read_classifier", false ); //read the classifier from a file
|
|
|
+
|
|
|
+ //write uncertainty results in the same folder as done for the segmentation results
|
|
|
+ resultdir = conf->gS("debug", "resultdir", "result");
|
|
|
+ cache = conf->gS ( "cache", "root", "" );
|
|
|
+
|
|
|
+
|
|
|
+ //stupid work around of the const attribute
|
|
|
+ Config confCopy = *conf;
|
|
|
+
|
|
|
+ //just to make sure, that we do NOT perform an optimization after every iteration step
|
|
|
+ //this would just take a lot of time, which is not desired so far
|
|
|
+ confCopy.sB("ClassifierGPHIK","performOptimizationAfterIncrement",false);
|
|
|
+
|
|
|
+ classifierString = conf->gS ( section, "classifier", "ClassifierGPHIK" );
|
|
|
+ classifier = NULL;
|
|
|
+ vclassifier = NULL;
|
|
|
+ if ( classifierString.compare("ClassifierGPHIK") == 0)
|
|
|
+ classifier = new GPHIKClassifierNICE ( &confCopy, "ClassifierGPHIK" );
|
|
|
+ else
|
|
|
+ vclassifier = GenericClassifierSelection::selectVecClassifier ( conf, classifierString );
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ findMaximumUncert = conf->gB(section, "findMaximumUncert", true);
|
|
|
+ whs = conf->gI ( section, "window_size", 10 );
|
|
|
+ //distance to next descriptor during training
|
|
|
+ trainWsize = conf->gI ( section, "train_window_size", 10 );
|
|
|
+ //distance to next descriptor during testing
|
|
|
+ testWSize = conf->gI (section, "test_window_size", 10);
|
|
|
+ // select your segmentation method here
|
|
|
+ string rsMethode = conf->gS ( section, "segmentation", "none" );
|
|
|
+
|
|
|
+ if(rsMethode == "none")
|
|
|
+ {
|
|
|
+ regionSeg = NULL;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ RegionSegmentationMethod *tmpRegionSeg = GenericRegionSegmentationMethodSelection::selectRegionSegmentationMethod(conf, rsMethode);
|
|
|
+ if ( reuseSegmentation )
|
|
|
+ regionSeg = new RSCache ( conf, tmpRegionSeg );
|
|
|
+ else
|
|
|
+ regionSeg = tmpRegionSeg;
|
|
|
+ }
|
|
|
+
|
|
|
+ cn = md->getClassNames ( "train" );
|
|
|
+
|
|
|
+ if ( read_classifier )
|
|
|
+ {
|
|
|
+ try
|
|
|
+ {
|
|
|
+ if ( classifier != NULL )
|
|
|
+ {
|
|
|
+ string classifierdst = "/classifier.data";
|
|
|
+ fprintf ( stderr, "SemSegNoveltyBinary:: Reading classifier data from %s\n", ( cache + classifierdst ).c_str() );
|
|
|
+ classifier->read ( cache + classifierdst );
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ string classifierdst = "/veccl.data";
|
|
|
+ fprintf ( stderr, "SemSegNoveltyBinary:: Reading classifier data from %s\n", ( cache + classifierdst ).c_str() );
|
|
|
+ vclassifier->read ( cache + classifierdst );
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ fprintf ( stderr, "SemSegNoveltyBinary:: successfully read\n" );
|
|
|
+ }
|
|
|
+ catch ( char *str )
|
|
|
+ {
|
|
|
+ cerr << "error reading data: " << str << endl;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ train ( md );
|
|
|
+ }
|
|
|
+
|
|
|
+ //define which measure for "novelty" we want to use
|
|
|
+ noveltyMethodString = conf->gS( section, "noveltyMethod", "gp-variance");
|
|
|
+ if (noveltyMethodString.compare("gp-variance") == 0) // novel = large variance
|
|
|
+ {
|
|
|
+ this->noveltyMethod = GPVARIANCE;
|
|
|
+ this->mostNoveltyWithMaxScores = true;
|
|
|
+ }
|
|
|
+ else if (noveltyMethodString.compare("gp-uncertainty") == 0) //novel = large uncertainty (mean / var)
|
|
|
+ {
|
|
|
+ this->noveltyMethod = GPUNCERTAINTY;
|
|
|
+ this->mostNoveltyWithMaxScores = false;
|
|
|
+ globalMaxUncert = numeric_limits<double>::max();
|
|
|
+ }
|
|
|
+ else if (noveltyMethodString.compare("gp-mean") == 0) //novel = small mean
|
|
|
+ {
|
|
|
+ this->noveltyMethod = GPMINMEAN;
|
|
|
+ this->mostNoveltyWithMaxScores = false;
|
|
|
+ globalMaxUncert = numeric_limits<double>::max();
|
|
|
+ }
|
|
|
+ else if (noveltyMethodString.compare("gp-meanRatio") == 0) //novel = small difference between mean of most plausible class and mean of snd
|
|
|
+ // most plausible class (not useful in binary settings)
|
|
|
+ {
|
|
|
+ this->noveltyMethod = GPMEANRATIO;
|
|
|
+ this->mostNoveltyWithMaxScores = false;
|
|
|
+ globalMaxUncert = numeric_limits<double>::max();
|
|
|
+ }
|
|
|
+ else if (noveltyMethodString.compare("gp-weightAll") == 0) // novel = large weight in alpha vector after updating the model (can be predicted exactly)
|
|
|
+ {
|
|
|
+ this->noveltyMethod = GPWEIGHTALL;
|
|
|
+ this->mostNoveltyWithMaxScores = true;
|
|
|
+ }
|
|
|
+ else if (noveltyMethodString.compare("gp-weightRatio") == 0) // novel = small difference between weights for alpha vectors
|
|
|
+ // with assumptions of GT label to be the most
|
|
|
+ // plausible against the second most plausible class
|
|
|
+ {
|
|
|
+ this->noveltyMethod = GPWEIGHTRATIO;
|
|
|
+ this->mostNoveltyWithMaxScores = false;
|
|
|
+ globalMaxUncert = numeric_limits<double>::max();
|
|
|
+ }
|
|
|
+ else if (noveltyMethodString.compare("random") == 0)
|
|
|
+ {
|
|
|
+ initRand();
|
|
|
+ this->noveltyMethod = RANDOM;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ this->noveltyMethod = GPVARIANCE;
|
|
|
+ this->mostNoveltyWithMaxScores = true;
|
|
|
+ }
|
|
|
+
|
|
|
+ //we don't have queried any region so far
|
|
|
+ queriedRegions.clear();
|
|
|
+ visualizeALimages = conf->gB(section, "visualizeALimages", false);
|
|
|
+
|
|
|
+ resultsOfSingleRun.clear();
|
|
|
+
|
|
|
+ write_results = conf->gB( "debug", "write_results", false );
|
|
|
+}
|
|
|
+
|
|
|
+SemSegNoveltyBinary::~SemSegNoveltyBinary()
|
|
|
+{
|
|
|
+ if(newTrainExamples.size() > 0)
|
|
|
+ {
|
|
|
+ // show most uncertain region
|
|
|
+ if (visualizeALimages)
|
|
|
+ showImage(maskedImg);
|
|
|
+
|
|
|
+ //incorporate new information into the classifier
|
|
|
+ if (classifier != NULL)
|
|
|
+ classifier->addMultipleExamples(newTrainExamples);
|
|
|
+
|
|
|
+ //store the classifier, such that we can read it again in the next round (if we like that)
|
|
|
+ classifier->save ( cache + "/classifier.data" );
|
|
|
+ }
|
|
|
+
|
|
|
+ // clean-up
|
|
|
+ if ( classifier != NULL )
|
|
|
+ delete classifier;
|
|
|
+ if ( vclassifier != NULL )
|
|
|
+ delete vclassifier;
|
|
|
+ if ( featExtract != NULL )
|
|
|
+ delete featExtract;
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegNoveltyBinary::visualizeRegion(const NICE::ColorImage &img, const NICE::Matrix ®ions, int region, NICE::ColorImage &outimage)
|
|
|
+{
|
|
|
+ std::vector<uchar> color;
|
|
|
+ color.push_back(255);
|
|
|
+ color.push_back(0);
|
|
|
+ color.push_back(0);
|
|
|
+
|
|
|
+ int width = img.width();
|
|
|
+ int height = img.height();
|
|
|
+
|
|
|
+ outimage.resize(width,height);
|
|
|
+
|
|
|
+ for(int y = 0; y < height; y++)
|
|
|
+ {
|
|
|
+ for(int x = 0; x < width; x++)
|
|
|
+ {
|
|
|
+ if(regions(x,y) == region)
|
|
|
+ {
|
|
|
+ for(int c = 0; c < 3; c++)
|
|
|
+ {
|
|
|
+ outimage(x,y,c) = color[c];
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ for(int c = 0; c < 3; c++)
|
|
|
+ {
|
|
|
+ outimage(x,y,c) = img(x,y,c);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegNoveltyBinary::train ( const MultiDataset *md )
|
|
|
+{
|
|
|
+ const LabeledSet train = * ( *md ) ["train"];
|
|
|
+ const LabeledSet *trainp = &train;
|
|
|
+
|
|
|
+ ////////////////////////
|
|
|
+ // feature extraction //
|
|
|
+ ////////////////////////
|
|
|
+
|
|
|
+ //check the same thing for the training classes - this is very specific to our setup
|
|
|
+ std::string forbidden_classesTrain_s = conf->gS ( "analysis", "donttrainTrain", "" );
|
|
|
+ if ( forbidden_classesTrain_s == "" )
|
|
|
+ {
|
|
|
+ forbidden_classesTrain_s = conf->gS ( "analysis", "forbidden_classesTrain", "" );
|
|
|
+ }
|
|
|
+ cn.getSelection ( forbidden_classesTrain_s, forbidden_classesTrain );
|
|
|
+
|
|
|
+ //check whether we have a single positive class
|
|
|
+ std::string positiveClass_s = conf->gS ( "SemSegNoveltyBinary", "positiveClass", "" );
|
|
|
+ std::set<int> positiveClassNumberTmp;
|
|
|
+ cn.getSelection ( positiveClass_s, positiveClassNumberTmp );
|
|
|
+
|
|
|
+ std::cerr << "BINARY SETTING ENABLED! " << std::endl;
|
|
|
+ switch ( positiveClassNumberTmp.size() )
|
|
|
+ {
|
|
|
+ case 0:
|
|
|
+ {
|
|
|
+ positiveClass = 0;
|
|
|
+ std::cerr << "no positive class given, assume 0 as positive class" << std::endl;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case 1:
|
|
|
+ {
|
|
|
+ positiveClass = *(positiveClassNumberTmp.begin());
|
|
|
+ std::cerr << "positive class will be number" << positiveClass << " with the name: " << positiveClass_s << std::endl;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ default:
|
|
|
+ {
|
|
|
+ //we specified more than a single positive class. right now, this is not what we are interested in, but
|
|
|
+ //in theory we could also accept this and convert positiveClass into a set of ints of possible positive classes
|
|
|
+ positiveClass = 0;
|
|
|
+ std::cerr << "no positive class given, assume 0 as positive class" << std::endl;
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ std::cerr << "============================" << std::endl << std::endl;
|
|
|
+
|
|
|
+
|
|
|
+ ProgressBar pb ( "Local Feature Extraction" );
|
|
|
+ pb.show();
|
|
|
+
|
|
|
+ int imgnb = 0;
|
|
|
+
|
|
|
+ Examples examples;
|
|
|
+ examples.filename = "training";
|
|
|
+
|
|
|
+ int featdim = -1;
|
|
|
+
|
|
|
+ classesInUse.clear();
|
|
|
+
|
|
|
+ LOOP_ALL_S ( *trainp )
|
|
|
+ {
|
|
|
+ //EACH_S(classno, currentFile);
|
|
|
+ EACH_INFO ( classno, info );
|
|
|
+
|
|
|
+ std::string currentFile = info.img();
|
|
|
+
|
|
|
+ CachedExample *ce = new CachedExample ( currentFile );
|
|
|
+
|
|
|
+ const LocalizationResult *locResult = info.localization();
|
|
|
+ if ( locResult->size() <= 0 )
|
|
|
+ {
|
|
|
+ fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
|
|
|
+ currentFile.c_str() );
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ int xsize, ysize;
|
|
|
+ ce->getImageSize ( xsize, ysize );
|
|
|
+
|
|
|
+ Image labels ( xsize, ysize );
|
|
|
+ labels.set ( 0 );
|
|
|
+ locResult->calcLabeledImage ( labels, ( *classNames ).getBackgroundClass() );
|
|
|
+
|
|
|
+ NICE::ColorImage img;
|
|
|
+ try {
|
|
|
+ img = ColorImage ( currentFile );
|
|
|
+ } catch ( Exception ) {
|
|
|
+ cerr << "SemSegNoveltyBinary: error opening image file <" << currentFile << ">" << endl;
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ Globals::setCurrentImgFN ( currentFile );
|
|
|
+
|
|
|
+ MultiChannelImageT<double> feats;
|
|
|
+
|
|
|
+ // extract features
|
|
|
+ featExtract->getFeats ( img, feats );
|
|
|
+ featdim = feats.channels();
|
|
|
+ feats.addChannel(featdim);
|
|
|
+
|
|
|
+ for (int c = 0; c < featdim; c++)
|
|
|
+ {
|
|
|
+ ImageT<double> tmp = feats[c];
|
|
|
+ ImageT<double> tmp2 = feats[c+featdim];
|
|
|
+
|
|
|
+ NICE::FilterT<double, double, double>::gradientStrength (tmp, tmp2);
|
|
|
+ }
|
|
|
+ featdim += featdim;
|
|
|
+
|
|
|
+ // compute integral images
|
|
|
+ for ( int c = 0; c < featdim; c++ )
|
|
|
+ {
|
|
|
+ feats.calcIntegral ( c );
|
|
|
+ }
|
|
|
+
|
|
|
+ for ( int y = 0; y < ysize; y += trainWsize)
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < xsize; x += trainWsize )
|
|
|
+ {
|
|
|
+
|
|
|
+ int classnoTmp = labels.getPixel ( x, y );
|
|
|
+
|
|
|
+ if ( forbidden_classesTrain.find ( classnoTmp ) != forbidden_classesTrain.end() )
|
|
|
+ {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ if (classesInUse.find(classnoTmp) == classesInUse.end())
|
|
|
+ {
|
|
|
+ classesInUse.insert(classnoTmp);
|
|
|
+ }
|
|
|
+
|
|
|
+ Example example;
|
|
|
+ example.vec = NULL;
|
|
|
+ example.svec = new SparseVector ( featdim );
|
|
|
+ for ( int f = 0; f < featdim; f++ )
|
|
|
+ {
|
|
|
+ double val = feats.getIntegralValue ( x - whs, y - whs, x + whs, y + whs, f );
|
|
|
+ if ( val > 1e-10 )
|
|
|
+ ( *example.svec ) [f] = val;
|
|
|
+ }
|
|
|
+
|
|
|
+ example.svec->normalize();
|
|
|
+
|
|
|
+ example.position = imgnb;
|
|
|
+ if ( classnoTmp == positiveClass )
|
|
|
+ examples.push_back ( pair<int, Example> ( 1, example ) );
|
|
|
+ else
|
|
|
+ examples.push_back ( pair<int, Example> ( 0, example ) );
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ delete ce;
|
|
|
+ imgnb++;
|
|
|
+ pb.update ( trainp->count() );
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ numberOfClasses = classesInUse.size();
|
|
|
+ std::cerr << "numberOfClasses: " << numberOfClasses << std::endl;
|
|
|
+ std::cerr << "classes in use: " << std::endl;
|
|
|
+ for (std::set<int>::const_iterator it = classesInUse.begin(); it != classesInUse.end(); it++)
|
|
|
+ {
|
|
|
+ std::cerr << *it << " : " << cn.text(*it) << " ";
|
|
|
+ }
|
|
|
+ std::cerr << std::endl;
|
|
|
+
|
|
|
+ pb.hide();
|
|
|
+
|
|
|
+
|
|
|
+ //////////////////////
|
|
|
+ // train classifier //
|
|
|
+ //////////////////////
|
|
|
+ FeaturePool fp;
|
|
|
+
|
|
|
+ Feature *f = new SparseVectorFeature ( featdim );
|
|
|
+
|
|
|
+ f->explode ( fp );
|
|
|
+ delete f;
|
|
|
+
|
|
|
+ if ( classifier != NULL )
|
|
|
+ {
|
|
|
+ std::cerr << "train FP-classifier with " << examples.size() << " examples" << std::endl;
|
|
|
+ classifier->train ( fp, examples );
|
|
|
+ std::cerr << "training finished" << std::endl;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ LabeledSetVector lvec;
|
|
|
+ convertExamplesToLSet ( examples, lvec );
|
|
|
+ vclassifier->teach ( lvec );
|
|
|
+// if ( usegmm )
|
|
|
+// convertLSetToSparseExamples ( examples, lvec );
|
|
|
+// else
|
|
|
+ std::cerr << "classifierString: " << classifierString << std::endl;
|
|
|
+ if (this->classifierString.compare("nn") == 0)
|
|
|
+ {
|
|
|
+ convertLSetToExamples ( examples, lvec, true /* only remove pointers to the data in the LSet-struct*/);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ convertLSetToExamples ( examples, lvec, false /* remove all training examples of the LSet-struct */);
|
|
|
+ }
|
|
|
+ vclassifier->finishTeaching();
|
|
|
+ }
|
|
|
+
|
|
|
+ fp.destroy();
|
|
|
+
|
|
|
+ if ( save_classifier )
|
|
|
+ {
|
|
|
+ if ( classifier != NULL )
|
|
|
+ classifier->save ( cache + "/classifier.data" );
|
|
|
+ else
|
|
|
+ vclassifier->save ( cache + "/veccl.data" );
|
|
|
+ }
|
|
|
+
|
|
|
+ ////////////
|
|
|
+ //clean up//
|
|
|
+ ////////////
|
|
|
+ for ( int i = 0; i < ( int ) examples.size(); i++ )
|
|
|
+ {
|
|
|
+ examples[i].second.clean();
|
|
|
+ }
|
|
|
+ examples.clear();
|
|
|
+
|
|
|
+ cerr << "SemSeg training finished" << endl;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+void SemSegNoveltyBinary::semanticseg ( CachedExample *ce, NICE::Image & segresult, NICE::MultiChannelImageT<double> & probabilities )
|
|
|
+{
|
|
|
+ Timer timer;
|
|
|
+ timer.start();
|
|
|
+
|
|
|
+ //segResult contains the GT labels when this method is called
|
|
|
+ // we simply store them in labels, to have an easy access to the GT information lateron
|
|
|
+ Image labels = segresult;
|
|
|
+ //just to be sure that we do not have a GT-biased result :)
|
|
|
+ segresult.set(0);
|
|
|
+
|
|
|
+ int featdim = -1;
|
|
|
+
|
|
|
+ std::string currentFile = Globals::getCurrentImgFN();
|
|
|
+
|
|
|
+
|
|
|
+ int xsize, ysize;
|
|
|
+ ce->getImageSize ( xsize, ysize );
|
|
|
+
|
|
|
+ probabilities.reInit( xsize, ysize, 2);
|
|
|
+ probabilities.setAll ( 0.0 );
|
|
|
+
|
|
|
+ NICE::ColorImage img;
|
|
|
+ try {
|
|
|
+ img = ColorImage ( currentFile );
|
|
|
+ } catch ( Exception ) {
|
|
|
+ cerr << "SemSegNoveltyBinary: error opening image file <" << currentFile << ">" << endl;
|
|
|
+ return;
|
|
|
+ }
|
|
|
+
|
|
|
+ MultiChannelImageT<double> feats;
|
|
|
+
|
|
|
+ // extract features
|
|
|
+ featExtract->getFeats ( img, feats );
|
|
|
+ featdim = feats.channels();
|
|
|
+ feats.addChannel(featdim);
|
|
|
+
|
|
|
+ for (int c = 0; c < featdim; c++)
|
|
|
+ {
|
|
|
+ ImageT<double> tmp = feats[c];
|
|
|
+ ImageT<double> tmp2 = feats[c+featdim];
|
|
|
+
|
|
|
+ NICE::FilterT<double, double, double>::gradientStrength (tmp, tmp2);
|
|
|
+ }
|
|
|
+ featdim += featdim;
|
|
|
+
|
|
|
+ // compute integral images
|
|
|
+ for ( int c = 0; c < featdim; c++ )
|
|
|
+ {
|
|
|
+ feats.calcIntegral ( c );
|
|
|
+ }
|
|
|
+
|
|
|
+ timer.stop();
|
|
|
+ std::cout << "AL time for preparation: " << timer.getLastAbsolute() << std::endl;
|
|
|
+
|
|
|
+ timer.start();
|
|
|
+ //classification results currently only needed to be computed separately if we use the vclassifier, i.e., the nearest neighbor used
|
|
|
+ // for the "novel feature learning" approach
|
|
|
+ //in all other settings, such as active sem seg in general, we do this within the novelty-computation-methods
|
|
|
+ if ( classifier == NULL )
|
|
|
+ {
|
|
|
+ this->computeClassificationResults( feats, segresult, probabilities, xsize, ysize, featdim);
|
|
|
+ }
|
|
|
+// timer.stop();
|
|
|
+//
|
|
|
+// std::cerr << "classification results computed" << std::endl;
|
|
|
+
|
|
|
+ FloatImage noveltyImage ( xsize, ysize );
|
|
|
+ noveltyImage.set ( 0.0 );
|
|
|
+
|
|
|
+ switch (noveltyMethod)
|
|
|
+ {
|
|
|
+ case GPVARIANCE:
|
|
|
+ {
|
|
|
+ this->computeNoveltyByVariance( noveltyImage, feats, segresult, probabilities, xsize, ysize, featdim );
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case GPUNCERTAINTY:
|
|
|
+ {
|
|
|
+ this->computeNoveltyByGPUncertainty( noveltyImage, feats, segresult, probabilities, xsize, ysize, featdim );
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case GPMINMEAN:
|
|
|
+ {
|
|
|
+ std::cerr << "compute novelty using the minimum mean" << std::endl;
|
|
|
+ this->computeNoveltyByGPMean( noveltyImage, feats, segresult, probabilities, xsize, ysize, featdim );
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case GPMEANRATIO:
|
|
|
+ {
|
|
|
+ this->computeNoveltyByGPMeanRatio( noveltyImage, feats, segresult, probabilities, xsize, ysize, featdim );
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case GPWEIGHTALL:
|
|
|
+ {
|
|
|
+ this->computeNoveltyByGPWeightAll( noveltyImage, feats, segresult, probabilities, xsize, ysize, featdim );
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case GPWEIGHTRATIO:
|
|
|
+ {
|
|
|
+ this->computeNoveltyByGPWeightRatio( noveltyImage, feats, segresult, probabilities, xsize, ysize, featdim );
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ case RANDOM:
|
|
|
+ {
|
|
|
+ this->computeNoveltyByRandom( noveltyImage, feats, segresult, probabilities, xsize, ysize, featdim );
|
|
|
+ break;
|
|
|
+ }
|
|
|
+ default:
|
|
|
+ {
|
|
|
+ //do nothing, keep the image constant to 0.0
|
|
|
+ break;
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ timer.stop();
|
|
|
+ std::cout << "AL time for novelty score computation: " << timer.getLastAbsolute() << std::endl;
|
|
|
+
|
|
|
+ if ( write_results || visualizeALimages )
|
|
|
+ {
|
|
|
+ ColorImage imgrgbTmp (xsize, ysize);
|
|
|
+ ICETools::convertToRGB ( noveltyImage, imgrgbTmp );
|
|
|
+
|
|
|
+ this->cn.labelToRGB( segresult, imgrgbTmp );
|
|
|
+
|
|
|
+ if ( write_results )
|
|
|
+ {
|
|
|
+ std::stringstream out;
|
|
|
+ std::vector< std::string > list2;
|
|
|
+ StringTools::split ( currentFile, '/', list2 );
|
|
|
+ out << resultdir << "/" << list2.back();
|
|
|
+// std::cerr << "writing to " << out.str() + "_run_" + NICE::intToString(this->iterationCountSuffix) + "_" + noveltyMethodString+"_unsmoothed.rawfloat" << std::endl;
|
|
|
+
|
|
|
+ noveltyImage.writeRaw(out.str() + "_run_" + NICE::intToString(this->iterationCountSuffix) + "_" + noveltyMethodString+"_unsmoothed.rawfloat");
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ if (visualizeALimages)
|
|
|
+ {
|
|
|
+ showImage(imgrgbTmp, "Novelty Image without Region Segmentation");
|
|
|
+ showImage(imgrgbTmp, "Classification Result without Region Segmentation");
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+ timer.start();
|
|
|
+
|
|
|
+ //Regionen ermitteln
|
|
|
+ if(regionSeg != NULL)
|
|
|
+ {
|
|
|
+ NICE::Matrix mask;
|
|
|
+ int amountRegions = regionSeg->segRegions ( img, mask );
|
|
|
+
|
|
|
+ //compute probs per region
|
|
|
+ std::vector<std::vector<double> > regionProb(amountRegions, std::vector<double>(probabilities.channels(),0.0));
|
|
|
+ std::vector<double> regionNoveltyMeasure (amountRegions, 0.0);
|
|
|
+
|
|
|
+ std::vector<int> regionCounter(amountRegions, 0);
|
|
|
+ std::vector<int> regionCounterNovelty(amountRegions, 0);
|
|
|
+ for ( int y = 0; y < ysize; y += trainWsize) //y++)
|
|
|
+ {
|
|
|
+ for (int x = 0; x < xsize; x += trainWsize) //x++)
|
|
|
+ {
|
|
|
+ int r = mask(x,y);
|
|
|
+ regionCounter[r]++;
|
|
|
+ for(int j = 0; j < probabilities.channels(); j++)
|
|
|
+ {
|
|
|
+ regionProb[r][j] += probabilities ( x, y, j );
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( forbidden_classesActiveLearning.find( labels(x,y) ) == forbidden_classesActiveLearning.end() )
|
|
|
+ {
|
|
|
+ //count the amount of "novelty" for the corresponding region
|
|
|
+ regionNoveltyMeasure[r] += noveltyImage(x,y);
|
|
|
+ regionCounterNovelty[r]++;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //find best class per region
|
|
|
+ std::vector<int> bestClassPerRegion(amountRegions,0);
|
|
|
+
|
|
|
+ double maxNoveltyScore = -numeric_limits<double>::max();
|
|
|
+ if (!mostNoveltyWithMaxScores)
|
|
|
+ {
|
|
|
+ maxNoveltyScore = numeric_limits<double>::max();
|
|
|
+ }
|
|
|
+
|
|
|
+ int maxUncertRegion = -1;
|
|
|
+
|
|
|
+ //loop over all regions and compute averaged novelty scores
|
|
|
+ for(int r = 0; r < amountRegions; r++)
|
|
|
+ {
|
|
|
+
|
|
|
+ //check for the most plausible class per region
|
|
|
+ double maxval = -numeric_limits<double>::max();
|
|
|
+
|
|
|
+ //loop over all classes
|
|
|
+ for(int c = 0; c < probabilities.channels(); c++)
|
|
|
+ {
|
|
|
+ regionProb[r][c] /= regionCounter[r];
|
|
|
+
|
|
|
+ if( (maxval < regionProb[r][c]) ) //&& (regionProb[r][c] != 0.0) )
|
|
|
+ {
|
|
|
+ maxval = regionProb[r][c];
|
|
|
+ bestClassPerRegion[r] = c;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //if the region only contains unvalid information (e.g., background) skip it
|
|
|
+ if (regionCounterNovelty[r] == 0)
|
|
|
+ {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+
|
|
|
+ //normalize summed novelty scores to region size
|
|
|
+ regionNoveltyMeasure[r] /= regionCounterNovelty[r];
|
|
|
+
|
|
|
+ //did we find a region that has a higher score as the most novel region known so far within this image?
|
|
|
+ if( ( mostNoveltyWithMaxScores && (maxNoveltyScore < regionNoveltyMeasure[r]) ) // if we look for large novelty scores, e.g., variance
|
|
|
+ || ( !mostNoveltyWithMaxScores && (maxNoveltyScore > regionNoveltyMeasure[r]) ) ) // if we look for small novelty scores, e.g., min mean
|
|
|
+ {
|
|
|
+ //did we already query a region of this image? -- and it was this specific region
|
|
|
+ if ( (queriedRegions.find( currentFile ) != queriedRegions.end() ) && ( queriedRegions[currentFile].find(r) != queriedRegions[currentFile].end() ) )
|
|
|
+ {
|
|
|
+ continue;
|
|
|
+ }
|
|
|
+ else //only accept the region as novel if we never queried it before
|
|
|
+ {
|
|
|
+ maxNoveltyScore = regionNoveltyMeasure[r];
|
|
|
+ maxUncertRegion = r;
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // after finding the most novel region for the current image, check whether this region is also the most novel with respect
|
|
|
+ // to all previously seen test images
|
|
|
+ // if so, store the corresponding features, since we want to "actively" query them to incorporate useful information
|
|
|
+ if(findMaximumUncert)
|
|
|
+ {
|
|
|
+ if( ( mostNoveltyWithMaxScores && (maxNoveltyScore > globalMaxUncert) )
|
|
|
+ || ( !mostNoveltyWithMaxScores && (maxNoveltyScore < globalMaxUncert) ) )
|
|
|
+ {
|
|
|
+ //current most novel region of the image has "higher" novelty score then previous most novel region of all test images worked on so far
|
|
|
+ // -> save new important features of this region
|
|
|
+ Examples examples;
|
|
|
+ for ( int y = 0; y < ysize; y += trainWsize )
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < xsize; x += trainWsize)
|
|
|
+ {
|
|
|
+ if(mask(x,y) == maxUncertRegion)
|
|
|
+ {
|
|
|
+ int classnoTmp = labels(x,y);
|
|
|
+ if ( forbidden_classesActiveLearning.find(classnoTmp) != forbidden_classesActiveLearning.end() )
|
|
|
+ continue;
|
|
|
+
|
|
|
+ Example example;
|
|
|
+ example.vec = NULL;
|
|
|
+ example.svec = new SparseVector ( featdim );
|
|
|
+
|
|
|
+ for ( int f = 0; f < featdim; f++ )
|
|
|
+ {
|
|
|
+ double val = feats.getIntegralValue ( x - whs, y - whs, x + whs, y + whs, f );
|
|
|
+ if ( val > 1e-10 )
|
|
|
+ ( *example.svec ) [f] = val;
|
|
|
+ }
|
|
|
+ example.svec->normalize();
|
|
|
+ if ( classnoTmp == positiveClass )
|
|
|
+ examples.push_back ( pair<int, Example> ( 1, example ) );
|
|
|
+ else
|
|
|
+ examples.push_back ( pair<int, Example> ( 0, example ) );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ if(examples.size() > 0)
|
|
|
+ {
|
|
|
+ std::cerr << "found " << examples.size() << " new examples in the queried region" << std::endl << std::endl;
|
|
|
+ newTrainExamples.clear();
|
|
|
+ newTrainExamples = examples;
|
|
|
+ globalMaxUncert = maxNoveltyScore;
|
|
|
+ //prepare for later visualization
|
|
|
+ visualizeRegion(img,mask,maxUncertRegion,maskedImg);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ std::cerr << "the queried region has no valid information" << std::endl << std::endl;
|
|
|
+ }
|
|
|
+
|
|
|
+ //save filename and region index
|
|
|
+ currentRegionToQuery.first = currentFile;
|
|
|
+ currentRegionToQuery.second = maxUncertRegion;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //write back best results per region
|
|
|
+ //i.e., write normalized novelty scores for every region into the novelty image
|
|
|
+ for ( int y = 0; y < ysize; y++)
|
|
|
+ {
|
|
|
+ for (int x = 0; x < xsize; x++)
|
|
|
+ {
|
|
|
+ int r = mask(x,y);
|
|
|
+ for(int j = 0; j < probabilities.channels(); j++)
|
|
|
+ {
|
|
|
+ probabilities ( x, y, j ) = regionProb[r][j];
|
|
|
+ }
|
|
|
+ if ( bestClassPerRegion[r] == 0 )
|
|
|
+ segresult(x,y) = positiveClass;
|
|
|
+ else //take the various class as negative
|
|
|
+ segresult(x,y) = 22; //bestClassPerRegion[r];
|
|
|
+
|
|
|
+ // write novelty scores for every segment into the "final" image
|
|
|
+ noveltyImage(x,y) = regionNoveltyMeasure[r];
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //compute these nice Classification results
|
|
|
+ for ( int y = 0; y < ysize; y++)
|
|
|
+ {
|
|
|
+ for (int x = 0; x < xsize; x++)
|
|
|
+ {
|
|
|
+ OBJREC::FullVector scoresTmp (2);
|
|
|
+ scoresTmp[1] = probabilities ( x, y, 0 ); //probabilities[0] == negative class == scores[1]
|
|
|
+ scoresTmp[0] = probabilities ( x, y, 1 ); //probabilities[1] == positive class == scores[0]
|
|
|
+
|
|
|
+ int cno = scoresTmp[1] > 0 ? 1 : 0;
|
|
|
+
|
|
|
+ ClassificationResult cr ( cno/*doesn't matter*/, scoresTmp );
|
|
|
+
|
|
|
+ if ( labels(x,y) == positiveClass )
|
|
|
+ cr.classno_groundtruth = 1;
|
|
|
+ else
|
|
|
+ cr.classno_groundtruth = 0;
|
|
|
+
|
|
|
+ resultsOfSingleRun.push_back(cr);
|
|
|
+ }
|
|
|
+ }
|
|
|
+ } // if regionSeg != null
|
|
|
+
|
|
|
+ timer.stop();
|
|
|
+ std::cout << "AL time for determination of novel regions: " << timer.getLastAbsolute() << std::endl;
|
|
|
+
|
|
|
+ timer.start();
|
|
|
+
|
|
|
+ ColorImage imgrgb ( xsize, ysize );
|
|
|
+
|
|
|
+ if ( write_results )
|
|
|
+ {
|
|
|
+ std::stringstream out;
|
|
|
+ std::vector< std::string > list2;
|
|
|
+ StringTools::split ( currentFile, '/', list2 );
|
|
|
+ out << resultdir << "/" << list2.back();
|
|
|
+
|
|
|
+ noveltyImage.writeRaw(out.str() + "_run_" + NICE::intToString(this->iterationCountSuffix) + "_" + noveltyMethodString+".rawfloat");
|
|
|
+ }
|
|
|
+
|
|
|
+ if (visualizeALimages)
|
|
|
+ {
|
|
|
+ ICETools::convertToRGB ( noveltyImage, imgrgb );
|
|
|
+ showImage(imgrgb, "Novelty Image");
|
|
|
+
|
|
|
+ ColorImage tmp (xsize, ysize);
|
|
|
+ cn.labelToRGB(segresult,tmp);
|
|
|
+ showImage(tmp, "Cl result after region seg");
|
|
|
+ }
|
|
|
+
|
|
|
+ timer.stop();
|
|
|
+ cout << "AL time for writing the raw novelty image: " << timer.getLastAbsolute() << endl;
|
|
|
+}
|
|
|
+
|
|
|
+inline void SemSegNoveltyBinary::computeClassificationResults( const NICE::MultiChannelImageT<double> & feats,
|
|
|
+ NICE::Image & segresult,
|
|
|
+ NICE::MultiChannelImageT<double> & probabilities,
|
|
|
+ const int & xsize,
|
|
|
+ const int & ysize,
|
|
|
+ const int & featdim
|
|
|
+ )
|
|
|
+{
|
|
|
+ std::cerr << "featdim: " << featdim << std::endl;
|
|
|
+
|
|
|
+ if ( classifier != NULL )
|
|
|
+ {
|
|
|
+
|
|
|
+
|
|
|
+ #pragma omp parallel for
|
|
|
+ for ( int y = 0; y < ysize; y += testWSize )
|
|
|
+ {
|
|
|
+ Example example;
|
|
|
+ example.vec = NULL;
|
|
|
+ example.svec = new SparseVector ( featdim );
|
|
|
+ for ( int x = 0; x < xsize; x += testWSize)
|
|
|
+ {
|
|
|
+ for ( int f = 0; f < featdim; f++ )
|
|
|
+ {
|
|
|
+ double val = feats.getIntegralValue ( x - whs, y - whs, x + whs, y + whs, f );
|
|
|
+ if ( val > 1e-10 )
|
|
|
+ ( *example.svec ) [f] = val;
|
|
|
+ }
|
|
|
+ example.svec->normalize();
|
|
|
+
|
|
|
+ ClassificationResult cr = classifier->classify ( example );
|
|
|
+
|
|
|
+ int xs = std::max(0, x - testWSize/2);
|
|
|
+ int xe = std::min(xsize - 1, x + testWSize/2);
|
|
|
+ int ys = std::max(0, y - testWSize/2);
|
|
|
+ int ye = std::min(ysize - 1, y + testWSize/2);
|
|
|
+ for (int yl = ys; yl <= ye; yl++)
|
|
|
+ {
|
|
|
+ for (int xl = xs; xl <= xe; xl++)
|
|
|
+ {
|
|
|
+ for ( int j = 0 ; j < cr.scores.size(); j++ )
|
|
|
+ {
|
|
|
+ probabilities ( xl, yl, j ) = cr.scores[j];
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( cr.classno == 1 )
|
|
|
+ segresult ( xl, yl ) = positiveClass;
|
|
|
+ else
|
|
|
+ segresult ( xl, yl ) = 22; //various
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ example.svec->clear();
|
|
|
+ }
|
|
|
+ delete example.svec;
|
|
|
+ example.svec = NULL;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else //vclassifier
|
|
|
+ {
|
|
|
+ std::cerr << "compute classification results with vclassifier" << std::endl;
|
|
|
+ #pragma omp parallel for
|
|
|
+ for ( int y = 0; y < ysize; y += testWSize )
|
|
|
+ {
|
|
|
+ for ( int x = 0; x < xsize; x += testWSize)
|
|
|
+ {
|
|
|
+ NICE::Vector v(featdim);
|
|
|
+ for ( int f = 0; f < featdim; f++ )
|
|
|
+ {
|
|
|
+ double val = feats.getIntegralValue ( x - whs, y - whs, x + whs, y + whs, f );
|
|
|
+ v[f] = val;
|
|
|
+ }
|
|
|
+ v.normalizeL1();
|
|
|
+
|
|
|
+ ClassificationResult cr = vclassifier->classify ( v );
|
|
|
+
|
|
|
+ int xs = std::max(0, x - testWSize/2);
|
|
|
+ int xe = std::min(xsize - 1, x + testWSize/2);
|
|
|
+ int ys = std::max(0, y - testWSize/2);
|
|
|
+ int ye = std::min(ysize - 1, y + testWSize/2);
|
|
|
+ for (int yl = ys; yl <= ye; yl++)
|
|
|
+ {
|
|
|
+ for (int xl = xs; xl <= xe; xl++)
|
|
|
+ {
|
|
|
+ for ( int j = 0 ; j < cr.scores.size(); j++ )
|
|
|
+ {
|
|
|
+ probabilities ( xl, yl, j ) = cr.scores[j];
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( cr.classno == 1 )
|
|
|
+ segresult ( xl, yl ) = positiveClass;
|
|
|
+ else
|
|
|
+ segresult ( xl, yl ) = 22; //various
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// compute novelty images depending on the strategy chosen
|
|
|
+
|
|
|
+void SemSegNoveltyBinary::computeNoveltyByRandom( NICE::FloatImage & noveltyImage,
|
|
|
+ const NICE::MultiChannelImageT<double> & feats,
|
|
|
+ NICE::Image & segresult,
|
|
|
+ NICE::MultiChannelImageT<double> & probabilities,
|
|
|
+ const int & xsize, const int & ysize, const int & featdim )
|
|
|
+{
|
|
|
+#pragma omp parallel for
|
|
|
+ for ( int y = 0; y < ysize; y += testWSize )
|
|
|
+ {
|
|
|
+ Example example;
|
|
|
+ example.vec = NULL;
|
|
|
+ example.svec = new SparseVector ( featdim );
|
|
|
+ for ( int x = 0; x < xsize; x += testWSize)
|
|
|
+ {
|
|
|
+ for ( int f = 0; f < featdim; f++ )
|
|
|
+ {
|
|
|
+ double val = feats.getIntegralValue ( x - whs, y - whs, x + whs, y + whs, f );
|
|
|
+ if ( val > 1e-10 )
|
|
|
+ ( *example.svec ) [f] = val;
|
|
|
+ }
|
|
|
+ example.svec->normalize();
|
|
|
+
|
|
|
+ ClassificationResult cr = classifier->classify ( example );
|
|
|
+
|
|
|
+ int xs = std::max(0, x - testWSize/2);
|
|
|
+ int xe = std::min(xsize - 1, x + testWSize/2);
|
|
|
+ int ys = std::max(0, y - testWSize/2);
|
|
|
+ int ye = std::min(ysize - 1, y + testWSize/2);
|
|
|
+
|
|
|
+ double randVal = randDouble();
|
|
|
+
|
|
|
+ for (int yl = ys; yl <= ye; yl++)
|
|
|
+ {
|
|
|
+ for (int xl = xs; xl <= xe; xl++)
|
|
|
+ {
|
|
|
+ for ( int j = 0 ; j < cr.scores.size(); j++ )
|
|
|
+ {
|
|
|
+ if ( cr.scores[j] == 1)
|
|
|
+ probabilities ( xl, yl, j ) = cr.scores[j];
|
|
|
+ else
|
|
|
+ probabilities ( xl, yl, 0 ) = cr.scores[j];
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( cr.classno == 1 )
|
|
|
+ segresult ( xl, yl ) = positiveClass;
|
|
|
+ else
|
|
|
+ segresult ( xl, yl ) = 22; //various
|
|
|
+
|
|
|
+ noveltyImage ( xl, yl ) = randVal;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+void SemSegNoveltyBinary::computeNoveltyByVariance( NICE::FloatImage & noveltyImage,
|
|
|
+ const NICE::MultiChannelImageT<double> & feats,
|
|
|
+ NICE::Image & segresult,
|
|
|
+ NICE::MultiChannelImageT<double> & probabilities,
|
|
|
+ const int & xsize, const int & ysize, const int & featdim )
|
|
|
+{
|
|
|
+#pragma omp parallel for
|
|
|
+ for ( int y = 0; y < ysize; y += testWSize )
|
|
|
+ {
|
|
|
+ Example example;
|
|
|
+ example.vec = NULL;
|
|
|
+ example.svec = new SparseVector ( featdim );
|
|
|
+ for ( int x = 0; x < xsize; x += testWSize)
|
|
|
+ {
|
|
|
+ for ( int f = 0; f < featdim; f++ )
|
|
|
+ {
|
|
|
+ double val = feats.getIntegralValue ( x - whs, y - whs, x + whs, y + whs, f );
|
|
|
+ if ( val > 1e-10 )
|
|
|
+ ( *example.svec ) [f] = val;
|
|
|
+ }
|
|
|
+ example.svec->normalize();
|
|
|
+
|
|
|
+ ClassificationResult cr = classifier->classify ( example );
|
|
|
+
|
|
|
+ int xs = std::max(0, x - testWSize/2);
|
|
|
+ int xe = std::min(xsize - 1, x + testWSize/2);
|
|
|
+ int ys = std::max(0, y - testWSize/2);
|
|
|
+ int ye = std::min(ysize - 1, y + testWSize/2);
|
|
|
+ for (int yl = ys; yl <= ye; yl++)
|
|
|
+ {
|
|
|
+ for (int xl = xs; xl <= xe; xl++)
|
|
|
+ {
|
|
|
+ for ( int j = 0 ; j < cr.scores.size(); j++ )
|
|
|
+ {
|
|
|
+ if ( cr.scores[j] == 1)
|
|
|
+ probabilities ( xl, yl, j ) = cr.scores[j];
|
|
|
+ else
|
|
|
+ probabilities ( xl, yl, 0 ) = cr.scores[j];
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( cr.classno == 1 )
|
|
|
+ segresult ( xl, yl ) = positiveClass;
|
|
|
+ else
|
|
|
+ segresult ( xl, yl ) = 22; //various
|
|
|
+
|
|
|
+ noveltyImage ( xl, yl ) = cr.uncertainty;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ example.svec->clear();
|
|
|
+ }
|
|
|
+ delete example.svec;
|
|
|
+ example.svec = NULL;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegNoveltyBinary::computeNoveltyByGPUncertainty( NICE::FloatImage & noveltyImage,
|
|
|
+ const NICE::MultiChannelImageT<double> & feats,
|
|
|
+ NICE::Image & segresult,
|
|
|
+ NICE::MultiChannelImageT<double> & probabilities,
|
|
|
+ const int & xsize, const int & ysize, const int & featdim )
|
|
|
+{
|
|
|
+
|
|
|
+ double gpNoise = conf->gD("GPHIK", "noise", 0.01);
|
|
|
+
|
|
|
+#pragma omp parallel for
|
|
|
+ for ( int y = 0; y < ysize; y += testWSize )
|
|
|
+ {
|
|
|
+ Example example;
|
|
|
+ example.vec = NULL;
|
|
|
+ example.svec = new SparseVector ( featdim );
|
|
|
+ for ( int x = 0; x < xsize; x += testWSize)
|
|
|
+ {
|
|
|
+ for ( int f = 0; f < featdim; f++ )
|
|
|
+ {
|
|
|
+ double val = feats.getIntegralValue ( x - whs, y - whs, x + whs, y + whs, f );
|
|
|
+ if ( val > 1e-10 )
|
|
|
+ ( *example.svec ) [f] = val;
|
|
|
+ }
|
|
|
+ example.svec->normalize();
|
|
|
+
|
|
|
+ ClassificationResult cr = classifier->classify ( example );
|
|
|
+
|
|
|
+ double gpMeanVal = abs(cr.scores[0]); //very specific to the binary setting
|
|
|
+
|
|
|
+ double firstTerm (1.0 / sqrt(cr.uncertainty+gpNoise));
|
|
|
+
|
|
|
+ //compute the heuristic GP-UNCERTAINTY, as proposed by Kapoor et al. in IJCV 2010
|
|
|
+ // GP-UNCERTAINTY : |mean| / sqrt(var^2 + gpnoise^2)
|
|
|
+ double gpUncertaintyVal = gpMeanVal*firstTerm; //firstTerm = 1.0 / sqrt(r.uncertainty+gpNoise))
|
|
|
+
|
|
|
+ int xs = std::max(0, x - testWSize/2);
|
|
|
+ int xe = std::min(xsize - 1, x + testWSize/2);
|
|
|
+ int ys = std::max(0, y - testWSize/2);
|
|
|
+ int ye = std::min(ysize - 1, y + testWSize/2);
|
|
|
+ for (int yl = ys; yl <= ye; yl++)
|
|
|
+ {
|
|
|
+ for (int xl = xs; xl <= xe; xl++)
|
|
|
+ {
|
|
|
+ for ( int j = 0 ; j < cr.scores.size(); j++ )
|
|
|
+ {
|
|
|
+ if ( cr.scores[j] == 1)
|
|
|
+ probabilities ( xl, yl, j ) = cr.scores[j];
|
|
|
+ else
|
|
|
+ probabilities ( xl, yl, 0 ) = cr.scores[j];
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( cr.classno == positiveClass )
|
|
|
+ segresult ( xl, yl ) = cr.classno;
|
|
|
+ else
|
|
|
+ segresult ( xl, yl ) = 22; //various
|
|
|
+ noveltyImage ( xl, yl ) = gpUncertaintyVal;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ example.svec->clear();
|
|
|
+ }
|
|
|
+ delete example.svec;
|
|
|
+ example.svec = NULL;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegNoveltyBinary::computeNoveltyByGPMean( NICE::FloatImage & noveltyImage,
|
|
|
+ const NICE::MultiChannelImageT<double> & feats,
|
|
|
+ NICE::Image & segresult,
|
|
|
+ NICE::MultiChannelImageT<double> & probabilities,
|
|
|
+ const int & xsize, const int & ysize, const int & featdim )
|
|
|
+{
|
|
|
+ double gpNoise = conf->gD("GPHIK", "noise", 0.01);
|
|
|
+
|
|
|
+#pragma omp parallel for
|
|
|
+ for ( int y = 0; y < ysize; y += testWSize )
|
|
|
+ {
|
|
|
+ Example example;
|
|
|
+ example.vec = NULL;
|
|
|
+ example.svec = new SparseVector ( featdim );
|
|
|
+ for ( int x = 0; x < xsize; x += testWSize)
|
|
|
+ {
|
|
|
+ for ( int f = 0; f < featdim; f++ )
|
|
|
+ {
|
|
|
+ double val = feats.getIntegralValue ( x - whs, y - whs, x + whs, y + whs, f );
|
|
|
+ if ( val > 1e-10 )
|
|
|
+ ( *example.svec ) [f] = val;
|
|
|
+ }
|
|
|
+ example.svec->normalize();
|
|
|
+
|
|
|
+ ClassificationResult cr = classifier->classify ( example );
|
|
|
+
|
|
|
+ double gpMeanVal = abs(cr.scores[0]); //very specific to the binary setting
|
|
|
+
|
|
|
+ int xs = std::max(0, x - testWSize/2);
|
|
|
+ int xe = std::min(xsize - 1, x + testWSize/2);
|
|
|
+ int ys = std::max(0, y - testWSize/2);
|
|
|
+ int ye = std::min(ysize - 1, y + testWSize/2);
|
|
|
+ for (int yl = ys; yl <= ye; yl++)
|
|
|
+ {
|
|
|
+ for (int xl = xs; xl <= xe; xl++)
|
|
|
+ {
|
|
|
+ for ( int j = 0 ; j < cr.scores.size(); j++ )
|
|
|
+ {
|
|
|
+ probabilities ( xl, yl, 0 ) = cr.scores[j];
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( cr.classno == 1 )
|
|
|
+ segresult ( xl, yl ) = positiveClass;
|
|
|
+ else
|
|
|
+ segresult ( xl, yl ) = 22; //various
|
|
|
+
|
|
|
+ noveltyImage ( xl, yl ) = gpMeanVal;
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegNoveltyBinary::computeNoveltyByGPMeanRatio( NICE::FloatImage & noveltyImage,
|
|
|
+ const NICE::MultiChannelImageT<double> & feats,
|
|
|
+ NICE::Image & segresult,
|
|
|
+ NICE::MultiChannelImageT<double> & probabilities,
|
|
|
+ const int & xsize, const int & ysize, const int & featdim )
|
|
|
+{
|
|
|
+ double gpNoise = conf->gD("GPHIK", "noise", 0.01);
|
|
|
+
|
|
|
+ //NOTE in binary settings, this is the same as the same as 2*mean
|
|
|
+
|
|
|
+#pragma omp parallel for
|
|
|
+ for ( int y = 0; y < ysize; y += testWSize )
|
|
|
+ {
|
|
|
+ Example example;
|
|
|
+ example.vec = NULL;
|
|
|
+ example.svec = new SparseVector ( featdim );
|
|
|
+ for ( int x = 0; x < xsize; x += testWSize)
|
|
|
+ {
|
|
|
+ for ( int f = 0; f < featdim; f++ )
|
|
|
+ {
|
|
|
+ double val = feats.getIntegralValue ( x - whs, y - whs, x + whs, y + whs, f );
|
|
|
+ if ( val > 1e-10 )
|
|
|
+ ( *example.svec ) [f] = val;
|
|
|
+ }
|
|
|
+ example.svec->normalize();
|
|
|
+
|
|
|
+ ClassificationResult cr = classifier->classify ( example );
|
|
|
+
|
|
|
+ //look at the difference in the absolut mean values for the most plausible class
|
|
|
+ // and the second most plausible class
|
|
|
+ double gpMeanRatioVal= 2*abs(cr.scores[0]); //very specific to the binary setting
|
|
|
+
|
|
|
+
|
|
|
+ int xs = std::max(0, x - testWSize/2);
|
|
|
+ int xe = std::min(xsize - 1, x + testWSize/2);
|
|
|
+ int ys = std::max(0, y - testWSize/2);
|
|
|
+ int ye = std::min(ysize - 1, y + testWSize/2);
|
|
|
+ for (int yl = ys; yl <= ye; yl++)
|
|
|
+ {
|
|
|
+ for (int xl = xs; xl <= xe; xl++)
|
|
|
+ {
|
|
|
+ for ( int j = 0 ; j < cr.scores.size(); j++ )
|
|
|
+ {
|
|
|
+ if ( cr.scores[j] == 1)
|
|
|
+ probabilities ( xl, yl, j ) = cr.scores[j];
|
|
|
+ else
|
|
|
+ probabilities ( xl, yl, 0 ) = cr.scores[j];
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( cr.classno == positiveClass )
|
|
|
+ segresult ( xl, yl ) = cr.classno;
|
|
|
+ else
|
|
|
+ segresult ( xl, yl ) = 22; //various
|
|
|
+ noveltyImage ( xl, yl ) = gpMeanRatioVal;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ example.svec->clear();
|
|
|
+ }
|
|
|
+ delete example.svec;
|
|
|
+ example.svec = NULL;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegNoveltyBinary::computeNoveltyByGPWeightAll( NICE::FloatImage & noveltyImage,
|
|
|
+ const NICE::MultiChannelImageT<double> & feats,
|
|
|
+ NICE::Image & segresult,
|
|
|
+ NICE::MultiChannelImageT<double> & probabilities,
|
|
|
+ const int & xsize, const int & ysize, const int & featdim )
|
|
|
+{
|
|
|
+ double gpNoise = conf->gD("GPHIK", "noise", 0.01);
|
|
|
+
|
|
|
+#pragma omp parallel for
|
|
|
+ for ( int y = 0; y < ysize; y += testWSize )
|
|
|
+ {
|
|
|
+ Example example;
|
|
|
+ example.vec = NULL;
|
|
|
+ example.svec = new SparseVector ( featdim );
|
|
|
+ for ( int x = 0; x < xsize; x += testWSize)
|
|
|
+ {
|
|
|
+ for ( int f = 0; f < featdim; f++ )
|
|
|
+ {
|
|
|
+ double val = feats.getIntegralValue ( x - whs, y - whs, x + whs, y + whs, f );
|
|
|
+ if ( val > 1e-10 )
|
|
|
+ ( *example.svec ) [f] = val;
|
|
|
+ }
|
|
|
+ example.svec->normalize();
|
|
|
+
|
|
|
+ ClassificationResult cr = classifier->classify ( example );
|
|
|
+
|
|
|
+ double firstTerm (1.0 / sqrt(cr.uncertainty+gpNoise));
|
|
|
+
|
|
|
+ double gpWeightAllVal ( 0.0 );
|
|
|
+
|
|
|
+ //binary scenario
|
|
|
+ gpWeightAllVal = std::min( abs(cr.scores[0]+1), abs(cr.scores[0]-1) );
|
|
|
+ gpWeightAllVal *= firstTerm;
|
|
|
+
|
|
|
+ int xs = std::max(0, x - testWSize/2);
|
|
|
+ int xe = std::min(xsize - 1, x + testWSize/2);
|
|
|
+ int ys = std::max(0, y - testWSize/2);
|
|
|
+ int ye = std::min(ysize - 1, y + testWSize/2);
|
|
|
+ for (int yl = ys; yl <= ye; yl++)
|
|
|
+ {
|
|
|
+ for (int xl = xs; xl <= xe; xl++)
|
|
|
+ {
|
|
|
+ for ( int j = 0 ; j < cr.scores.size(); j++ )
|
|
|
+ {
|
|
|
+ if ( cr.scores[j] == 1)
|
|
|
+ probabilities ( xl, yl, j ) = cr.scores[j];
|
|
|
+ else
|
|
|
+ probabilities ( xl, yl, 0 ) = cr.scores[j];
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( cr.classno == positiveClass )
|
|
|
+ segresult ( xl, yl ) = cr.classno;
|
|
|
+ else
|
|
|
+ segresult ( xl, yl ) = 22; //various
|
|
|
+ noveltyImage ( xl, yl ) = gpWeightAllVal;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ example.svec->clear();
|
|
|
+ }
|
|
|
+ delete example.svec;
|
|
|
+ example.svec = NULL;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegNoveltyBinary::computeNoveltyByGPWeightRatio( NICE::FloatImage & noveltyImage,
|
|
|
+ const NICE::MultiChannelImageT<double> & feats,
|
|
|
+ NICE::Image & segresult,
|
|
|
+ NICE::MultiChannelImageT<double> & probabilities,
|
|
|
+ const int & xsize, const int & ysize, const int & featdim )
|
|
|
+{
|
|
|
+ double gpNoise = conf->gD("GPHIK", "noise", 0.01);
|
|
|
+
|
|
|
+ //NOTE in binary settings, this is the same as the same as 2*weightAll
|
|
|
+
|
|
|
+#pragma omp parallel for
|
|
|
+ for ( int y = 0; y < ysize; y += testWSize )
|
|
|
+ {
|
|
|
+ Example example;
|
|
|
+ example.vec = NULL;
|
|
|
+ example.svec = new SparseVector ( featdim );
|
|
|
+ for ( int x = 0; x < xsize; x += testWSize)
|
|
|
+ {
|
|
|
+ for ( int f = 0; f < featdim; f++ )
|
|
|
+ {
|
|
|
+ double val = feats.getIntegralValue ( x - whs, y - whs, x + whs, y + whs, f );
|
|
|
+ if ( val > 1e-10 )
|
|
|
+ ( *example.svec ) [f] = val;
|
|
|
+ }
|
|
|
+ example.svec->normalize();
|
|
|
+
|
|
|
+ ClassificationResult cr = classifier->classify ( example );
|
|
|
+
|
|
|
+
|
|
|
+ double firstTerm (1.0 / sqrt(cr.uncertainty+gpNoise));
|
|
|
+
|
|
|
+ double gpWeightRatioVal ( 0.0 );
|
|
|
+
|
|
|
+ //binary scenario
|
|
|
+ gpWeightRatioVal = std::min( abs(cr.scores[0]+1), abs(cr.scores[0]-1) );
|
|
|
+ gpWeightRatioVal *= 2*firstTerm;
|
|
|
+
|
|
|
+ int xs = std::max(0, x - testWSize/2);
|
|
|
+ int xe = std::min(xsize - 1, x + testWSize/2);
|
|
|
+ int ys = std::max(0, y - testWSize/2);
|
|
|
+ int ye = std::min(ysize - 1, y + testWSize/2);
|
|
|
+ for (int yl = ys; yl <= ye; yl++)
|
|
|
+ {
|
|
|
+ for (int xl = xs; xl <= xe; xl++)
|
|
|
+ {
|
|
|
+ for ( int j = 0 ; j < cr.scores.size(); j++ )
|
|
|
+ {
|
|
|
+ if ( cr.scores[j] == 1)
|
|
|
+ probabilities ( xl, yl, j ) = cr.scores[j];
|
|
|
+ else
|
|
|
+ probabilities ( xl, yl, 0 ) = cr.scores[j];
|
|
|
+ }
|
|
|
+
|
|
|
+ if ( cr.classno == positiveClass )
|
|
|
+ segresult ( xl, yl ) = cr.classno;
|
|
|
+ else
|
|
|
+ segresult ( xl, yl ) = 22; //various
|
|
|
+ noveltyImage ( xl, yl ) = gpWeightRatioVal;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ example.svec->clear();
|
|
|
+ }
|
|
|
+ delete example.svec;
|
|
|
+ example.svec = NULL;
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+void SemSegNoveltyBinary::addNewExample(const NICE::Vector& newExample, const int & newClassNo)
|
|
|
+{
|
|
|
+ //accept the new class as valid information
|
|
|
+ if ( forbidden_classesTrain.find ( newClassNo ) != forbidden_classesTrain.end() )
|
|
|
+ {
|
|
|
+ forbidden_classesTrain.erase(newClassNo);
|
|
|
+ numberOfClasses++;
|
|
|
+ }
|
|
|
+ if ( classesInUse.find ( newClassNo ) == classesInUse.end() )
|
|
|
+ {
|
|
|
+ classesInUse.insert( newClassNo );
|
|
|
+ }
|
|
|
+
|
|
|
+
|
|
|
+ //then add it to the classifier used
|
|
|
+ if ( classifier != NULL )
|
|
|
+ {
|
|
|
+ //TODO
|
|
|
+ }
|
|
|
+ else //vclassifier
|
|
|
+ {
|
|
|
+ if (this->classifierString.compare("nn") == 0)
|
|
|
+ {
|
|
|
+ vclassifier->teach ( newClassNo, newExample );
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void SemSegNoveltyBinary::addNovelExamples()
|
|
|
+{
|
|
|
+
|
|
|
+ Timer timer;
|
|
|
+
|
|
|
+ //show the image that contains the most novel region
|
|
|
+ if (visualizeALimages)
|
|
|
+ showImage(maskedImg, "Most novel region");
|
|
|
+
|
|
|
+ timer.start();
|
|
|
+
|
|
|
+ std::stringstream out;
|
|
|
+ std::vector< std::string > list;
|
|
|
+ StringTools::split ( currentRegionToQuery.first, '/', list );
|
|
|
+ out << resultdir << "/" << list.back();
|
|
|
+
|
|
|
+ maskedImg.writePPM ( out.str() + "_run_" + NICE::intToString(this->iterationCountSuffix) + "_" + noveltyMethodString+ "_query.ppm" );
|
|
|
+
|
|
|
+
|
|
|
+ timer.stop();
|
|
|
+ std::cerr << "AL time for writing queried image: " << timer.getLast() << std::endl;
|
|
|
+
|
|
|
+ timer.start();
|
|
|
+
|
|
|
+ //check which classes will be added using the features from the novel region
|
|
|
+ std::set<int> newClassNumbers;
|
|
|
+ newClassNumbers.clear(); //just to be sure
|
|
|
+ for ( uint i = 0 ; i < newTrainExamples.size() ; i++ )
|
|
|
+ {
|
|
|
+ if (newClassNumbers.find(newTrainExamples[i].first /* classNumber*/) == newClassNumbers.end() )
|
|
|
+ {
|
|
|
+ newClassNumbers.insert(newTrainExamples[i].first );
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ //accept the new classes as valid information
|
|
|
+ for (std::set<int>::const_iterator clNoIt = newClassNumbers.begin(); clNoIt != newClassNumbers.end(); clNoIt++)
|
|
|
+ {
|
|
|
+ if ( forbidden_classesTrain.find ( *clNoIt ) != forbidden_classesTrain.end() )
|
|
|
+ {
|
|
|
+ forbidden_classesTrain.erase(*clNoIt);
|
|
|
+ numberOfClasses++;
|
|
|
+ }
|
|
|
+ if ( classesInUse.find ( *clNoIt ) == classesInUse.end() )
|
|
|
+ {
|
|
|
+ classesInUse.insert( *clNoIt );
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ timer.stop();
|
|
|
+ std::cerr << "AL time for accepting possible new classes: " << timer.getLast() << std::endl;
|
|
|
+
|
|
|
+ timer.start();
|
|
|
+ //then add the new features to the classifier used
|
|
|
+ if ( classifier != NULL )
|
|
|
+ {
|
|
|
+ if (this->classifierString.compare("ClassifierGPHIK") == 0)
|
|
|
+ {
|
|
|
+ classifier->addMultipleExamples ( this->newTrainExamples );
|
|
|
+ }
|
|
|
+ }
|
|
|
+ else //vclassifier
|
|
|
+ {
|
|
|
+ //TODO
|
|
|
+ }
|
|
|
+
|
|
|
+ timer.stop();
|
|
|
+ std::cerr << "AL time for actually updating the classifier: " << timer.getLast() << std::endl;
|
|
|
+
|
|
|
+ std::cerr << "the current region to query is: " << currentRegionToQuery.first << " -- " << currentRegionToQuery.second << std::endl;
|
|
|
+
|
|
|
+ //did we already query a region of this image?
|
|
|
+ if ( queriedRegions.find( currentRegionToQuery.first ) != queriedRegions.end() )
|
|
|
+ {
|
|
|
+ queriedRegions[ currentRegionToQuery.first ].insert(currentRegionToQuery.second);
|
|
|
+ }
|
|
|
+ else
|
|
|
+ {
|
|
|
+ std::set<int> tmpSet; tmpSet.insert(currentRegionToQuery.second);
|
|
|
+ queriedRegions.insert(std::pair<std::string,std::set<int> > (currentRegionToQuery.first, tmpSet ) );
|
|
|
+ }
|
|
|
+
|
|
|
+ std::cerr << "Write already queried regions: " << std::endl;
|
|
|
+ for (std::map<std::string,std::set<int> >::const_iterator it = queriedRegions.begin(); it != queriedRegions.end(); it++)
|
|
|
+ {
|
|
|
+ std::cerr << "image: " << it->first << " -- ";
|
|
|
+ for (std::set<int>::const_iterator itReg = it->second.begin(); itReg != it->second.end(); itReg++)
|
|
|
+ {
|
|
|
+ std::cerr << *itReg << " ";
|
|
|
+ }
|
|
|
+ std::cerr << std::endl;
|
|
|
+ }
|
|
|
+
|
|
|
+ //clear the latest results, since one iteration is over
|
|
|
+ globalMaxUncert = -numeric_limits<double>::max();
|
|
|
+ if (!mostNoveltyWithMaxScores)
|
|
|
+ globalMaxUncert = numeric_limits<double>::max();
|
|
|
+}
|
|
|
+
|
|
|
+const Examples * SemSegNoveltyBinary::getNovelExamples() const
|
|
|
+{
|
|
|
+ return &(this->newTrainExamples);
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+double SemSegNoveltyBinary::getAUCPerformance() const
|
|
|
+{
|
|
|
+ std::cerr << "evaluate AUC performance" << std::endl;
|
|
|
+ int noGTPositives ( 0 );
|
|
|
+ int noGTNegatives ( 0 );
|
|
|
+
|
|
|
+ for (std::vector<OBJREC::ClassificationResult>::const_iterator it = resultsOfSingleRun.begin(); it != resultsOfSingleRun.end(); it++)
|
|
|
+ {
|
|
|
+ if (it->classno_groundtruth == 1)
|
|
|
+ {
|
|
|
+ noGTPositives++;
|
|
|
+ }
|
|
|
+ else
|
|
|
+ noGTNegatives++;
|
|
|
+ }
|
|
|
+
|
|
|
+ std::cerr << "GT positives: " << noGTPositives << " -- GT negatives: " << noGTNegatives << std::endl;
|
|
|
+
|
|
|
+ std::cerr << "ARR: " << resultsOfSingleRun.getAverageRecognitionRate() << std::endl;
|
|
|
+
|
|
|
+ return resultsOfSingleRun.getBinaryClassPerformance( ClassificationResults::PERF_AUC );
|
|
|
+}
|