|
@@ -18,223 +18,227 @@
|
|
|
|
|
|
#include "gp-hik-exp/GPHIKClassifierNICE.h"
|
|
|
|
|
|
-namespace OBJREC {
|
|
|
+namespace OBJREC
|
|
|
+{
|
|
|
|
|
|
/** Localization system */
|
|
|
|
|
|
class SemSegContextTree : public SemanticSegmentation, public NICE::Persistent
|
|
|
{
|
|
|
- /** Segmentation Method */
|
|
|
- RegionSegmentationMethod *segmentation;
|
|
|
+ /** Segmentation Method */
|
|
|
+ RegionSegmentationMethod *segmentation;
|
|
|
+
|
|
|
+ /** tree -> saved as vector of nodes */
|
|
|
+ std::vector<std::vector<TreeNode> > forest;
|
|
|
+
|
|
|
+ /** local features */
|
|
|
+ LFColorWeijer *lfcw;
|
|
|
+
|
|
|
+ /** number of featuretype -> currently: local and context features = 2 */
|
|
|
+ int ftypes;
|
|
|
+
|
|
|
+ /** maximum samples for tree */
|
|
|
+ int maxSamples;
|
|
|
+
|
|
|
+ /** size for neighbourhood */
|
|
|
+ int windowSize;
|
|
|
+
|
|
|
+ /** how many feats should be considered for a split */
|
|
|
+ int featsPerSplit;
|
|
|
+
|
|
|
+ /** count samples per label */
|
|
|
+ std::map<int, int> labelcounter;
|
|
|
+
|
|
|
+ /** map of labels */
|
|
|
+ std::map<int, int> labelmap;
|
|
|
+
|
|
|
+ /** map of labels inverse*/
|
|
|
+ std::map<int, int> labelmapback;
|
|
|
+
|
|
|
+ /** scalefactor for balancing for each class */
|
|
|
+ std::vector<double> a;
|
|
|
+
|
|
|
+ /** counter for used operations */
|
|
|
+ std::vector<int> opOverview;
|
|
|
+
|
|
|
+ /** relative use of context vs raw features per tree level*/
|
|
|
+ std::vector<std::vector<double> > contextOverview;
|
|
|
+
|
|
|
+ /** the minimum number of features allowed in a leaf */
|
|
|
+ int minFeats;
|
|
|
+
|
|
|
+ /** maximal depth of tree */
|
|
|
+ int maxDepth;
|
|
|
+
|
|
|
+ /** current depth for training */
|
|
|
+ int depth;
|
|
|
+
|
|
|
+ /** how many splittests */
|
|
|
+ int randomTests;
|
|
|
+
|
|
|
+ /** operations for pairwise features */
|
|
|
+ std::vector<std::vector<Operation*> > ops;
|
|
|
+
|
|
|
+ std::vector<ValueAccess*> calcVal;
|
|
|
+
|
|
|
+ /** use alternative calculation for information gain */
|
|
|
+ bool useShannonEntropy;
|
|
|
+
|
|
|
+ /** Classnames */
|
|
|
+ ClassNames classnames;
|
|
|
+
|
|
|
+ /** train selection */
|
|
|
+ std::set<int> forbidden_classes;
|
|
|
+
|
|
|
+ /** Configfile */
|
|
|
+ const NICE::Config *conf;
|
|
|
+
|
|
|
+ /** use pixelwise labeling or regionlabeling with additional segmenation */
|
|
|
+ bool pixelWiseLabeling;
|
|
|
+
|
|
|
+ /** Number of trees used for the forest */
|
|
|
+ int nbTrees;
|
|
|
+
|
|
|
+ /** use Gradient image or not */
|
|
|
+ bool useGradient;
|
|
|
+
|
|
|
+ /** use Color features from van de Weijer or not */
|
|
|
+ bool useWeijer;
|
|
|
+
|
|
|
+ /** use Edge features from Difference of Gaussian preprocessing or not */
|
|
|
+ bool useGaussian;
|
|
|
+
|
|
|
+ /** use Variance map features or not */
|
|
|
+ bool useVariance;
|
|
|
+
|
|
|
+ /** use Regions as extra feature channel or not */
|
|
|
+ bool useRegionFeature;
|
|
|
|
|
|
- /** tree -> saved as vector of nodes */
|
|
|
- std::vector<std::vector<TreeNode> > forest;
|
|
|
+ /** use external image categorization to avoid some classes */
|
|
|
+ bool useCategorization;
|
|
|
|
|
|
- /** local features */
|
|
|
- LFColorWeijer *lfcw;
|
|
|
+ /** categorization information for external categorization */
|
|
|
+ std::string cndir;
|
|
|
|
|
|
- /** number of featuretype -> currently: local and context features = 2 */
|
|
|
- int ftypes;
|
|
|
-
|
|
|
- /** maximum samples for tree */
|
|
|
- int maxSamples;
|
|
|
-
|
|
|
- /** size for neighbourhood */
|
|
|
- int windowSize;
|
|
|
-
|
|
|
- /** how many feats should be considered for a split */
|
|
|
- int featsPerSplit;
|
|
|
-
|
|
|
- /** count samples per label */
|
|
|
- std::map<int, int> labelcounter;
|
|
|
-
|
|
|
- /** map of labels */
|
|
|
- std::map<int, int> labelmap;
|
|
|
-
|
|
|
- /** map of labels inverse*/
|
|
|
- std::map<int, int> labelmapback;
|
|
|
-
|
|
|
- /** scalefactor for balancing for each class */
|
|
|
- std::vector<double> a;
|
|
|
-
|
|
|
- /** counter for used operations */
|
|
|
- std::vector<int> opOverview;
|
|
|
-
|
|
|
- /** relative use of context vs raw features per tree level*/
|
|
|
- std::vector<std::vector<double> > contextOverview;
|
|
|
-
|
|
|
- /** the minimum number of features allowed in a leaf */
|
|
|
- int minFeats;
|
|
|
-
|
|
|
- /** maximal depth of tree */
|
|
|
- int maxDepth;
|
|
|
-
|
|
|
- /** current depth for training */
|
|
|
- int depth;
|
|
|
-
|
|
|
- /** how many splittests */
|
|
|
- int randomTests;
|
|
|
-
|
|
|
- /** operations for pairwise features */
|
|
|
- std::vector<std::vector<Operation*> > ops;
|
|
|
-
|
|
|
- std::vector<ValueAccess*> calcVal;
|
|
|
-
|
|
|
- /** use alternative calculation for information gain */
|
|
|
- bool useShannonEntropy;
|
|
|
-
|
|
|
- /** Classnames */
|
|
|
- ClassNames classnames;
|
|
|
-
|
|
|
- /** train selection */
|
|
|
- std::set<int> forbidden_classes;
|
|
|
-
|
|
|
- /** Configfile */
|
|
|
- const NICE::Config *conf;
|
|
|
-
|
|
|
- /** use pixelwise labeling or regionlabeling with additional segmenation */
|
|
|
- bool pixelWiseLabeling;
|
|
|
-
|
|
|
- /** Number of trees used for the forest */
|
|
|
- int nbTrees;
|
|
|
-
|
|
|
- /** use Gradient image or not */
|
|
|
- bool useGradient;
|
|
|
-
|
|
|
- /** use Color features from van de Weijer or not */
|
|
|
- bool useWeijer;
|
|
|
-
|
|
|
- /** use Edge features from Difference of Gaussian preprocessing or not */
|
|
|
- bool useGaussian;
|
|
|
-
|
|
|
- /** use Regions as extra feature channel or not */
|
|
|
- bool useRegionFeature;
|
|
|
-
|
|
|
- /** use external image categorization to avoid some classes */
|
|
|
- bool useCategorization;
|
|
|
-
|
|
|
- /** categorization information for external categorization */
|
|
|
- std::string cndir;
|
|
|
-
|
|
|
- /** how to handle each channel
|
|
|
- * 0: simple grayvalue features
|
|
|
- * 1: which pixel belongs to which region
|
|
|
- * 2: graycolor integral images
|
|
|
- * 3: context integral images
|
|
|
- * 4: context features (not in MultiChannelImageT encoded)
|
|
|
- */
|
|
|
- std::vector<int> channelType;
|
|
|
-
|
|
|
- /** list of channels per feature type */
|
|
|
- std::vector<std::vector<int> > channelsPerType;
|
|
|
-
|
|
|
- /** whether we should use the geometric features of Hoeim (only offline computation with MATLAB supported) */
|
|
|
- bool useHoiemFeatures;
|
|
|
-
|
|
|
- /** directory of the geometric features */
|
|
|
- std::string hoiemDirectory;
|
|
|
-
|
|
|
- /** first iteration or not */
|
|
|
- bool firstiteration;
|
|
|
-
|
|
|
- /** which IntegralImage channel belongs to which raw value channel */
|
|
|
- std::vector<std::pair<int, int> > integralMap;
|
|
|
-
|
|
|
- /** amount of grayvalue Channels */
|
|
|
- int rawChannels;
|
|
|
-
|
|
|
- /** classifier for categorization */
|
|
|
- OBJREC::GPHIKClassifierNICE *fasthik;
|
|
|
-
|
|
|
- /** unique numbers for nodes */
|
|
|
- int uniquenumber;
|
|
|
-
|
|
|
- public:
|
|
|
- /** simple constructor */
|
|
|
- SemSegContextTree ( const NICE::Config *conf, const MultiDataset *md );
|
|
|
-
|
|
|
- /** simple destructor */
|
|
|
- virtual ~SemSegContextTree();
|
|
|
-
|
|
|
- /**
|
|
|
- * test a single 3d image
|
|
|
- * @param imgData input data
|
|
|
- * @param segresult segmentation results
|
|
|
- * @param probabilities probabilities for each pixel
|
|
|
- */
|
|
|
- void semanticseg ( NICE::MultiChannelImage3DT<double> & imgData, NICE::MultiChannelImageT<double> & segresult, NICE::MultiChannelImage3DT<double> & probabilities, const std::vector<std::string> & filelist );
|
|
|
-
|
|
|
- /**
|
|
|
- * the main training method
|
|
|
- * @param md training data
|
|
|
- */
|
|
|
- void train ( const MultiDataset *md );
|
|
|
-
|
|
|
- /**
|
|
|
- * @brief computes integral image of given feats
|
|
|
- *
|
|
|
- * @param currentfeats input features
|
|
|
- * @param integralImage output image (must be initilized)
|
|
|
- * @return void
|
|
|
- **/
|
|
|
- void computeIntegralImage ( const NICE::MultiChannelImage3DT<unsigned short int> ¤tfeats, NICE::MultiChannelImage3DT<double> &lfeats, int firstChannel );
|
|
|
-
|
|
|
- /**
|
|
|
- * @brief reads image and does some simple convertions
|
|
|
- *
|
|
|
- * @param feats output image
|
|
|
- * @param currentFile image filename
|
|
|
- * @return void
|
|
|
- **/
|
|
|
- void extractBasicFeatures ( NICE::MultiChannelImage3DT<double> &feats, const NICE::MultiChannelImage3DT<double> &imgData, const std::vector<std::string> &filelist, int &amountRegions);
|
|
|
-
|
|
|
- /**
|
|
|
- * compute best split for current settings
|
|
|
- * @param feats features
|
|
|
- * @param currentfeats matrix with current node for each feature
|
|
|
- * @param labels labels for each feature
|
|
|
- * @param node current node
|
|
|
- * @param splitfeat output feature position
|
|
|
- * @param splitval
|
|
|
- * @return best information gain
|
|
|
- */
|
|
|
- double getBestSplit ( std::vector<NICE::MultiChannelImage3DT<double> > &feats, std::vector<NICE::MultiChannelImage3DT<unsigned short int> > ¤tfeats, const std::vector<NICE::MultiChannelImageT<int> > &labels, int node, Operation *&splitop, double &splitval, const int &tree, std::vector<std::vector<std::vector<double> > > ®ionProbs );
|
|
|
-
|
|
|
- /**
|
|
|
- * @brief computes the mean probability for a given class over all trees
|
|
|
- * @param x x position
|
|
|
- * @param y y position
|
|
|
- * @param z z position
|
|
|
- * @param channel current class
|
|
|
- * @param currentfeats information about the nodes
|
|
|
- * @return double mean value
|
|
|
- **/
|
|
|
- inline double getMeanProb ( const int &x, const int &y, const int &z, const int &channel, const NICE::MultiChannelImage3DT<unsigned short int> ¤tfeats );
|
|
|
-
|
|
|
- /**
|
|
|
- * @brief load all data to is stream
|
|
|
- *
|
|
|
- * @param is input stream
|
|
|
- * @param format has no influence
|
|
|
- * @return void
|
|
|
- **/
|
|
|
- virtual void restore ( std::istream & is, int format = 0 );
|
|
|
-
|
|
|
- /**
|
|
|
- * @brief save all data to is stream
|
|
|
- *
|
|
|
- * @param os output stream
|
|
|
- * @param format has no influence
|
|
|
- * @return void
|
|
|
- **/
|
|
|
- virtual void store ( std::ostream & os, int format = 0 ) const;
|
|
|
-
|
|
|
- /**
|
|
|
- * @brief clean up
|
|
|
- *
|
|
|
- * @return void
|
|
|
- **/
|
|
|
- virtual void clear () {}
|
|
|
+ /** how to handle each channel
|
|
|
+ * 0: simple grayvalue features
|
|
|
+ * 1: which pixel belongs to which region
|
|
|
+ * 2: graycolor integral images
|
|
|
+ * 3: context integral images
|
|
|
+ * 4: context features (not in MultiChannelImageT encoded)
|
|
|
+ */
|
|
|
+ std::vector<int> channelType;
|
|
|
+
|
|
|
+ /** list of channels per feature type */
|
|
|
+ std::vector<std::vector<int> > channelsPerType;
|
|
|
+
|
|
|
+ /** whether we should use the geometric features of Hoeim (only offline computation with MATLAB supported) */
|
|
|
+ bool useHoiemFeatures;
|
|
|
+
|
|
|
+ /** directory of the geometric features */
|
|
|
+ std::string hoiemDirectory;
|
|
|
+
|
|
|
+ /** first iteration or not */
|
|
|
+ bool firstiteration;
|
|
|
+
|
|
|
+ /** which IntegralImage channel belongs to which raw value channel */
|
|
|
+ std::vector<std::pair<int, int> > integralMap;
|
|
|
+
|
|
|
+ /** amount of grayvalue Channels */
|
|
|
+ int rawChannels;
|
|
|
+
|
|
|
+ /** classifier for categorization */
|
|
|
+ OBJREC::GPHIKClassifierNICE *fasthik;
|
|
|
+
|
|
|
+ /** unique numbers for nodes */
|
|
|
+ int uniquenumber;
|
|
|
+
|
|
|
+public:
|
|
|
+ /** simple constructor */
|
|
|
+ SemSegContextTree ( const NICE::Config *conf, const MultiDataset *md );
|
|
|
+
|
|
|
+ /** simple destructor */
|
|
|
+ virtual ~SemSegContextTree();
|
|
|
+
|
|
|
+ /**
|
|
|
+ * test a single 3d image
|
|
|
+ * @param imgData input data
|
|
|
+ * @param segresult segmentation results
|
|
|
+ * @param probabilities probabilities for each pixel
|
|
|
+ */
|
|
|
+ void semanticseg ( NICE::MultiChannelImage3DT<double> & imgData, NICE::MultiChannelImageT<double> & segresult, NICE::MultiChannelImage3DT<double> & probabilities, const std::vector<std::string> & filelist );
|
|
|
+
|
|
|
+ /**
|
|
|
+ * the main training method
|
|
|
+ * @param md training data
|
|
|
+ */
|
|
|
+ void train ( const MultiDataset *md );
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @brief computes integral image of given feats
|
|
|
+ *
|
|
|
+ * @param currentfeats input features
|
|
|
+ * @param integralImage output image (must be initilized)
|
|
|
+ * @return void
|
|
|
+ **/
|
|
|
+ void computeIntegralImage ( const NICE::MultiChannelImage3DT<unsigned short int> ¤tfeats, NICE::MultiChannelImage3DT<double> &lfeats, int firstChannel );
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @brief reads image and does some simple convertions
|
|
|
+ *
|
|
|
+ * @param feats output image
|
|
|
+ * @param currentFile image filename
|
|
|
+ * @return void
|
|
|
+ **/
|
|
|
+ void extractBasicFeatures ( NICE::MultiChannelImage3DT<double> &feats, const NICE::MultiChannelImage3DT<double> &imgData, const std::vector<std::string> &filelist, int &amountRegions );
|
|
|
+
|
|
|
+ /**
|
|
|
+ * compute best split for current settings
|
|
|
+ * @param feats features
|
|
|
+ * @param currentfeats matrix with current node for each feature
|
|
|
+ * @param labels labels for each feature
|
|
|
+ * @param node current node
|
|
|
+ * @param splitfeat output feature position
|
|
|
+ * @param splitval
|
|
|
+ * @return best information gain
|
|
|
+ */
|
|
|
+ double getBestSplit ( std::vector<NICE::MultiChannelImage3DT<double> > &feats, std::vector<NICE::MultiChannelImage3DT<unsigned short int> > ¤tfeats, const std::vector<NICE::MultiChannelImageT<int> > &labels, int node, Operation *&splitop, double &splitval, const int &tree, std::vector<std::vector<std::vector<double> > > ®ionProbs );
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @brief computes the mean probability for a given class over all trees
|
|
|
+ * @param x x position
|
|
|
+ * @param y y position
|
|
|
+ * @param z z position
|
|
|
+ * @param channel current class
|
|
|
+ * @param currentfeats information about the nodes
|
|
|
+ * @return double mean value
|
|
|
+ **/
|
|
|
+ inline double getMeanProb ( const int &x, const int &y, const int &z, const int &channel, const NICE::MultiChannelImage3DT<unsigned short int> ¤tfeats );
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @brief load all data to is stream
|
|
|
+ *
|
|
|
+ * @param is input stream
|
|
|
+ * @param format has no influence
|
|
|
+ * @return void
|
|
|
+ **/
|
|
|
+ virtual void restore ( std::istream & is, int format = 0 );
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @brief save all data to is stream
|
|
|
+ *
|
|
|
+ * @param os output stream
|
|
|
+ * @param format has no influence
|
|
|
+ * @return void
|
|
|
+ **/
|
|
|
+ virtual void store ( std::ostream & os, int format = 0 ) const;
|
|
|
+
|
|
|
+ /**
|
|
|
+ * @brief clean up
|
|
|
+ *
|
|
|
+ * @return void
|
|
|
+ **/
|
|
|
+ virtual void clear () {}
|
|
|
|
|
|
};
|
|
|
|