// Beispielhafter Aufruf: BUILD_x86_64/progs/testSemanticSegmentation -config /** * @file testSemanticSegmentation.cpp * @brief test semantic segmentation routines * @author Erik Rodner * @date 03/20/2008 */ #ifdef NICE_USELIB_OPENMP #include #endif #include "core/basics/Config.h" #include "core/basics/StringTools.h" #include #include #include #include #include #include #include using namespace OBJREC; using namespace NICE; using namespace std; void updateMatrix( const NICE::Image & img, const NICE::Image & gt, NICE::Matrix & M, const set & forbidden_classes ) { double subsamplex = gt.width() / ( double )img.width(); double subsampley = gt.height() / ( double )img.height(); for ( int y = 0 ; y < gt.height() ; y++ ) for ( int x = 0 ; x < gt.width() ; x++ ) { int xx = ( int )( x / subsamplex ); int yy = ( int )( y / subsampley ); if ( xx < 0 ) xx = 0; if ( yy < 0 ) yy = 0; if ( xx > img.width() - 1 ) xx = img.width() - 1; if ( yy > img.height() - 1 ) yy = img.height() - 1; int cimg = img.getPixel( xx, yy ); int gimg = gt.getPixel( x, y ); if ( forbidden_classes.find( gimg ) == forbidden_classes.end() ) { M( gimg, cimg )++; } } } /** test semantic segmentation routines */ int main( int argc, char **argv ) { std::set_terminate( __gnu_cxx::__verbose_terminate_handler ); Config conf( argc, argv ); ResourceStatistics rs; bool show_result = conf.gB( "debug", "show_results", false ); bool write_results = conf.gB( "debug", "write_results", false ); bool write_results_pascal = conf.gB( "debug", "write_results_pascal", false ); std::string resultdir = conf.gS( "debug", "resultdir", "." ); if ( write_results ) { cerr << "Writing Results to " << resultdir << endl; } MultiDataset md( &conf ); const ClassNames & classNames = md.getClassNames( "train" ); SemanticSegmentation *semseg = NULL; semseg = new SemSegContextTree( &conf, &md ); const LabeledSet *testFiles = md["test"]; set forbidden_classes; std::string forbidden_classes_s = conf.gS( "analysis", "forbidden_classes", "" ); classNames.getSelection( forbidden_classes_s, forbidden_classes ); ProgressBar pb( "Semantic Segmentation Analysis" ); pb.show(); int fileno = 0, imageno = 0; vector< int > zsizeVec; semseg->getDepthVector( testFiles, zsizeVec ); int depthCount = 0, idx = 0; vector< string > filelist; NICE::MultiChannelImageT segresult; NICE::MultiChannelImageT gt; std::vector< NICE::Matrix > M_vec; LOOP_ALL_S( *testFiles ) { EACH_INFO( classno, info ); std::string file = info.img(); filelist.push_back( file ); depthCount++; NICE::Image lm; NICE::Image lm_gt; if ( info.hasLocalizationInfo() ) { const LocalizationResult *l_gt = info.localization(); lm.resize( l_gt->xsize, l_gt->ysize ); lm.set( 0 ); lm_gt.resize( l_gt->xsize, l_gt->ysize ); lm_gt.set( 0 ); l_gt->calcLabeledImage( lm, classNames.getBackgroundClass() ); fprintf( stderr, "testSemanticSegmentation: Generating Labeled NICE::Image (Ground-Truth)\n" ); l_gt->calcLabeledImage( lm_gt, classNames.getBackgroundClass() ); } segresult.addChannel( lm ); gt.addChannel( lm_gt ); if ( depthCount < zsizeVec[idx] ) continue; NICE::MultiChannelImage3DT probabilities; NICE::MultiChannelImage3DT imgData; semseg->make3DImage( filelist, imgData ); semseg->semanticseg( imgData, segresult, probabilities, filelist ); fprintf( stderr, "testSemanticSegmentation: Segmentation finished !\n" ); // save to file for (int z = 0; z < zsizeVec[idx]; z++) { std::string fname = StringTools::baseName( filelist[z], false ); if ( write_results_pascal ) { NICE::Image pascal_lm( segresult.width(), segresult.height() ); int backgroundClass = classNames.getBackgroundClass(); for ( int y = 0 ; y < segresult.height(); y++ ) { for ( int x = 0 ; x < segresult.width(); x++ ) { int v = segresult.get( x, y, (uint)z ); if ( v == backgroundClass ) pascal_lm.setPixel( x, y, 255 ); else pascal_lm.setPixel( x, y, 255 - v - 1 ); } } char filename[1024]; char *format = ( char * )"pgm"; sprintf( filename, "%s/%s.%s", resultdir.c_str(), fname.c_str(), format ); pascal_lm.write( filename ); } if ( show_result || write_results ) { NICE::ColorImage orig( filelist[z] ); NICE::ColorImage rgb; NICE::ColorImage rgb_gt; NICE::Image lm( segresult.width(), segresult.height() ); NICE::Image lm_gt( segresult.width(), segresult.height() ); for ( int y = 0 ; y < segresult.height(); y++ ) { for ( int x = 0 ; x < segresult.width(); x++ ) { lm.setPixel( x, y, segresult.get( x, y, (uint)z ) ); lm_gt.setPixel( x, y, gt.get( x, y, (uint)z ) ); } } classNames.labelToRGB( lm, rgb ); classNames.labelToRGB( lm_gt, rgb_gt ); if ( write_results ) { char filename[1024]; char *format = ( char * )"ppm"; sprintf( filename, "%03d_%03d.%s", imageno, fileno, format ); std::string origfilename = resultdir + "/orig_" + string( filename ); cerr << "Writing to file " << origfilename << endl; orig.write( origfilename ); rgb.write( resultdir + "/result_" + string( filename ) ); rgb_gt.write( resultdir + "/groundtruth_" + string( filename ) ); fileno++; } if ( show_result ) { #ifndef NOVISUAL showImage( rgb, "Result" ); showImage( rgb_gt, "Groundtruth" ); showImage( orig, "Input" ); #endif } } } //#pragma omp critical for (int z = 0; z < zsizeVec[idx]; z++) { NICE::Image lm( segresult.width(), segresult.height() ); NICE::Image lm_gt( segresult.width(), segresult.height() ); for ( int y = 0 ; y < segresult.height(); y++ ) { for ( int x = 0 ; x < segresult.width(); x++ ) { lm.setPixel( x, y, segresult.get( x, y, (uint)z ) ); lm_gt.setPixel( x, y, gt.get( x, y, (uint)z ) ); } } NICE::Matrix M( classNames.getMaxClassno() + 1, classNames.getMaxClassno() + 1 ); M.set( 0 ); updateMatrix( lm, lm_gt, M, forbidden_classes ); M_vec.push_back( M ); cerr << M << endl; } // prepare for new 3d image filelist.clear(); NICE::MultiChannelImageT segresult; NICE::MultiChannelImageT gt; depthCount = 0; idx++; imageno++; pb.update( testFiles->count() ); } segresult.freeData(); pb.hide(); long maxMemory; rs.getMaximumMemory(maxMemory); cerr << "Maximum memory used: " << maxMemory << " KB" << endl; double overall = 0.0; double sumall = 0.0; NICE::Matrix M( classNames.getMaxClassno() + 1, classNames.getMaxClassno() + 1 ); M.set( 0 ); for (int s = 0; s < ( int )M_vec.size(); s++ ) { NICE::Matrix M_tmp = M_vec[s]; for ( int r = 0; r < ( int )M_tmp.rows(); r++ ) { for ( int c = 0; c < ( int )M_tmp.cols(); c++ ) { if ( r == c ) overall += M_tmp( r, c ); sumall += M_tmp( r, c ); M( r, c ) += M_tmp( r, c ); } } } overall /= sumall; // normalizing M using rows for ( int r = 0 ; r < ( int )M.rows() ; r++ ) { double sum = 0.0; for ( int c = 0 ; c < ( int )M.cols() ; c++ ) sum += M( r, c ); if ( fabs( sum ) > 1e-4 ) for ( int c = 0 ; c < ( int )M.cols() ; c++ ) M( r, c ) /= sum; } cerr << M << endl; double avg_perf = 0.0; int classes_trained = 0; for ( int r = 0 ; r < ( int )M.rows() ; r++ ) { if (( classNames.existsClassno( r ) ) && ( forbidden_classes.find( r ) == forbidden_classes.end() ) ) { avg_perf += M( r, r ); double lsum = 0.0; for(int r2 = 0; r2 < ( int )M.rows(); r2++) { lsum += M(r,r2); } if(lsum != 0.0) { classes_trained++; } } } if ( write_results ) { ofstream fout(( resultdir + "/res.txt" ).c_str(), ios::out ); fout << "overall: " << overall << endl; fout << "Average Performance " << avg_perf / ( classes_trained ) << endl; fout << "Lower Bound " << 1.0 / classes_trained << endl; for ( int r = 0 ; r < ( int )M.rows() ; r++ ) { if (( classNames.existsClassno( r ) ) && ( forbidden_classes.find( r ) == forbidden_classes.end() ) ) { std::string classname = classNames.text( r ); fout << classname.c_str() << ": " << M( r, r ) << endl; } } fout.close(); } fprintf( stderr, "overall: %f\n", overall ); fprintf( stderr, "Average Performance %f\n", avg_perf / ( classes_trained ) ); //fprintf(stderr, "Lower Bound %f\n", 1.0 / classes_trained); for ( int r = 0 ; r < ( int )M.rows() ; r++ ) { if (( classNames.existsClassno( r ) ) && ( forbidden_classes.find( r ) == forbidden_classes.end() ) ) { std::string classname = classNames.text( r ); fprintf( stderr, "%s: %f\n", classname.c_str(), M( r, r ) ); } } delete semseg; return 0; }