/** * @file SemSegContextTree.h * @brief Context Trees -> Combination of decision tree and context information * @author Björn Fröhlich * @date 29.11.2011 */ #ifndef SemSegContextTreeINCLUDE #define SemSegContextTreeINCLUDE #include "SemanticSegmentation.h" #include #include "vislearning/features/localfeatures/LFColorWeijer.h" #include "objrec/segmentation/RegionSegmentationMethod.h" namespace OBJREC { class Operation; class TreeNode { public: /** probabilities for each class */ std::vector probs; /** left child node */ int left; /** right child node */ int right; /** position of feat for decision */ Operation *feat; /** decision stamp */ double decision; /** is the node a leaf or not */ bool isleaf; /** distribution in current node */ std::vector dist; /** depth of the node in the tree */ int depth; /** simple constructor */ TreeNode():left(-1),right(-1),feat(NULL), decision(-1.0), isleaf(false){} /** standard constructor */ TreeNode(int _left, int _right, Operation *_feat, double _decision):left(_left),right(_right),feat(_feat), decision(_decision),isleaf(false){} }; struct Features{ NICE::MultiChannelImageT *feats; MultiChannelImageT *cfeats; int cTree; std::vector *tree; NICE::MultiChannelImageT *integralImg; }; class ValueAccess { public: virtual double getVal(const Features &feats, const int &x, const int &y, const int &channel) = 0; virtual std::string writeInfos() = 0; }; class Operation { protected: int x1, y1, x2, y2, channel1, channel2; ValueAccess *values; public: virtual void set(int _x1, int _y1, int _x2, int _y2, int _channel1, int _channel2, ValueAccess *_values) { x1 = _x1; y1 = _y1; x2 = _x2; y2 = _y2; channel1 = _channel1; channel2 = _channel2; values = _values; } /** * @brief abstract interface for feature computation * @param feats features * @param cfeats number of tree node for each pixel * @param tree current tree * @param x current x position * @param y current y position * @return double distance **/ virtual double getVal(const Features &feats, const int &x, const int &y) = 0; virtual Operation* clone() = 0; virtual std::string writeInfos() = 0; inline void getXY(const Features &feats, int &xsize, int &ysize) { xsize = feats.feats->width(); ysize = feats.feats->height(); } }; /** Localization system */ class SemSegContextTree : public SemanticSegmentation { /** Segmentation Method */ RegionSegmentationMethod *segmentation; /** tree -> saved as vector of nodes */ std::vector > forest; /** local features */ LFColorWeijer *lfcw; /** number of featuretype -> currently: local and context features = 2 */ int ftypes; /** distance between features */ int grid; /** maximum samples for tree */ int maxSamples; /** size for neighbourhood */ int windowSize; /** how many feats should be considered for a split */ int featsPerSplit; /** count samples per label */ std::map labelcounter; /** map of labels */ std::map labelmap; /** map of labels inverse*/ std::map labelmapback; /** scalefactor for balancing for each class */ std::vector a; /** the minimum number of features allowed in a leaf */ int minFeats; /** maximal depth of tree */ int maxDepth; /** operations for pairwise features */ std::vector ops; /** operations for pairwise context features */ std::vector cops; std::vector calcVal; /** vector of all possible features */ std::vector featsel; /** use alternative calculation for information gain */ bool useShannonEntropy; /** Classnames */ ClassNames classnames; /** train selection */ std::set forbidden_classes; /** Configfile */ const Config *conf; /** use pixelwise labeling or regionlabeling with additional segmenation */ bool pixelWiseLabeling; /** use Gaussian distributed features based on the feature position */ bool useGaussian; /** Number of trees used for the forest */ int nbTrees; public: /** simple constructor */ SemSegContextTree( const NICE::Config *conf, const MultiDataset *md ); /** simple destructor */ virtual ~SemSegContextTree(); /** * test a single image * @param ce input data * @param segresult segmentation results * @param probabilities probabilities for each pixel */ void semanticseg ( CachedExample *ce, NICE::Image & segresult, NICE::MultiChannelImageT & probabilities ); /** * the main training method * @param md training data */ void train ( const MultiDataset *md ); /** * @brief computes integral image of given feats * * @param currentfeats input features * @param integralImage output image (must be initilized) * @return void **/ void computeIntegralImage(const NICE::MultiChannelImageT ¤tfeats, const NICE::MultiChannelImageT &lfeats, NICE::MultiChannelImageT &integralImage); /** * compute best split for current settings * @param feats features * @param currentfeats matrix with current node for each feature * @param labels labels for each feature * @param node current node * @param splitfeat output feature position * @param splitval * @return best information gain */ double getBestSplit(std::vector > &feats, std::vector > ¤tfeats, std::vector > &integralImgs, const std::vector > &labels, int node, Operation *&splitop, double &splitval, const int &tree); /** * @brief computes the mean probability for a given class over all trees * @param x x position * @param y y position * @param channel current class * @param currentfeats information about the nodes * @return double mean value **/ inline double getMeanProb(const int &x,const int &y,const int &channel, const MultiChannelImageT ¤tfeats); }; } // namespace #endif