// Beispielhafter Aufruf: BUILD_x86_64/progs/testSemanticSegmentation -config /** * @file testSemanticSegmentation.cpp * @brief test semantic segmentation routines * @author Erik Rodner * @date 03/20/2008 */ #ifdef NICE_USELIB_OPENMP #include #endif #include "core/basics/Config.h" #include "core/basics/StringTools.h" #include #include #include #include #include #include #include using namespace OBJREC; using namespace NICE; using namespace std; void updateMatrix ( const NICE::Image & img, const NICE::Image & gt, NICE::Matrix & M, const set & forbidden_classes ) { double subsamplex = gt.width() / ( double ) img.width(); double subsampley = gt.height() / ( double ) img.height(); for ( int y = 0 ; y < gt.height() ; y++ ) for ( int x = 0 ; x < gt.width() ; x++ ) { int xx = ( int ) ( x / subsamplex ); int yy = ( int ) ( y / subsampley ); if ( xx < 0 ) xx = 0; if ( yy < 0 ) yy = 0; if ( xx > img.width() - 1 ) xx = img.width() - 1; if ( yy > img.height() - 1 ) yy = img.height() - 1; int cimg = img.getPixel ( xx, yy ); int gimg = gt.getPixel ( x, y ); if ( forbidden_classes.find ( gimg ) == forbidden_classes.end() ) { M ( gimg, cimg ) ++; } } } /** test semantic segmentation routines */ int main ( int argc, char **argv ) { std::set_terminate ( __gnu_cxx::__verbose_terminate_handler ); Config conf ( argc, argv ); ResourceStatistics rs; /*-------------I/O CONFIGURATION-------------*/ bool show_result = conf.gB ( "debug", "show_results", false ); bool write_results = conf.gB ( "debug", "write_results", false ); bool write_results_pascal = conf.gB ( "debug", "write_results_pascal", false ); bool run_3dseg = conf.gB ( "debug", "run_3dseg", true ); string output_type = conf.gS ( "debug", "output_type", "ppm" ); string output_postfix = conf.gS ( "debug", "output_postfix", "" ); string resultdir = conf.gS ( "debug", "resultdir", "." ); /*-------------------------------------------*/ if ( write_results ) { cerr << "Writing Results to " << resultdir << endl; } MultiDataset md ( &conf ); const ClassNames & classNames = md.getClassNames ( "train" ); SemanticSegmentation *semseg = NULL; semseg = new SemSegContextTree ( &conf, &md ); const LabeledSet *testFiles = md["test"]; set forbidden_classes; std::string forbidden_classes_s = conf.gS ( "analysis", "forbidden_classes", "" ); classNames.getSelection ( forbidden_classes_s, forbidden_classes ); ProgressBar pb ( "Semantic Segmentation Analysis" ); pb.show(); int fileno = 0, imageno = 0; vector< int > zsizeVec; semseg->getDepthVector ( testFiles, zsizeVec ); int depthCount = 0, idx = 0; vector< string > filelist; NICE::MultiChannelImageT segresult; NICE::MultiChannelImageT gt; std::vector< NICE::Matrix > M_vec; LOOP_ALL_S ( *testFiles ) { EACH_INFO ( classno, info ); std::string file = info.img(); filelist.push_back ( file ); depthCount++; NICE::Image lm; NICE::Image lm_gt; if ( info.hasLocalizationInfo() ) { const LocalizationResult *l_gt = info.localization(); lm.resize ( l_gt->xsize, l_gt->ysize ); lm.set ( 0 ); lm_gt.resize ( l_gt->xsize, l_gt->ysize ); lm_gt.set ( 0 ); l_gt->calcLabeledImage ( lm, classNames.getBackgroundClass() ); fprintf ( stderr, "testSemanticSegmentation: Generating Labeled NICE::Image (Ground-Truth)\n" ); l_gt->calcLabeledImage ( lm_gt, classNames.getBackgroundClass() ); } segresult.addChannel ( lm ); gt.addChannel ( lm_gt ); int depthBoundary = 0; if ( run_3dseg ) { depthBoundary = zsizeVec[idx]; } if ( depthCount < depthBoundary ) continue; NICE::MultiChannelImage3DT probabilities; NICE::MultiChannelImage3DT imgData; semseg->make3DImage ( filelist, imgData ); cout << segresult.width() << " " << segresult.height() << " " << segresult.channels() << endl; semseg->semanticseg ( imgData, segresult, probabilities, filelist ); fprintf ( stderr, "testSemanticSegmentation: Segmentation finished !\n" ); // save to file for ( int z = 0; z < segresult.channels(); z++ ) { std::string fname = StringTools::baseName ( filelist[z], false ); if ( write_results_pascal ) { NICE::Image pascal_lm ( segresult.width(), segresult.height() ); int backgroundClass = classNames.getBackgroundClass(); for ( int y = 0 ; y < segresult.height(); y++ ) { for ( int x = 0 ; x < segresult.width(); x++ ) { int v = segresult.get ( x, y, ( uint ) z ); if ( v == backgroundClass ) pascal_lm.setPixel ( x, y, 255 ); else pascal_lm.setPixel ( x, y, 255 - v - 1 ); } } char filename[1024]; sprintf ( filename, "%s/%s.%s.%s", resultdir.c_str(), fname.c_str(), output_postfix.c_str(), output_type.c_str() ); pascal_lm.write ( filename ); } if ( show_result || write_results ) { NICE::ColorImage orig ( filelist[z] ); NICE::ColorImage rgb; NICE::ColorImage rgb_gt; for ( int y = 0 ; y < segresult.height(); y++ ) { for ( int x = 0 ; x < segresult.width(); x++ ) { lm.setPixel ( x, y, segresult.get ( x, y, ( uint ) z ) ); if ( run_3dseg ) lm_gt.setPixel ( x, y, gt.get ( x, y, ( uint ) z ) ); } } classNames.labelToRGB ( lm, rgb ); classNames.labelToRGB ( lm_gt, rgb_gt ); if ( write_results ) { char filename[1024]; if ( output_postfix.size() > 0 ) sprintf ( filename, "%s.%s.%s", fname.c_str(), output_postfix.c_str(), output_type.c_str() ); else sprintf ( filename, "%s.%s", fname.c_str(), output_type.c_str() ); std::string origfilename = resultdir + "/orig_" + string ( filename ); cerr << "Writing to file " << origfilename << endl; orig.write ( origfilename ); rgb.write ( resultdir + "/result_" + string ( filename ) ); rgb_gt.write ( resultdir + "/groundtruth_" + string ( filename ) ); fileno++; } if ( show_result ) { #ifndef NOVISUAL showImage ( rgb, "Result" ); showImage ( rgb_gt, "Groundtruth" ); showImage ( orig, "Input" ); #endif } } } //#pragma omp critical for ( int z = 0; z < segresult.channels(); z++ ) { for ( int y = 0 ; y < segresult.height(); y++ ) { for ( int x = 0 ; x < segresult.width(); x++ ) { lm.setPixel ( x, y, segresult.get ( x, y, ( uint ) z ) ); if ( run_3dseg ) lm_gt.setPixel ( x, y, gt.get ( x, y, ( uint ) z ) ); } } NICE::Matrix M ( classNames.getMaxClassno() + 1, classNames.getMaxClassno() + 1 ); M.set ( 0 ); updateMatrix ( lm, lm_gt, M, forbidden_classes ); M_vec.push_back ( M ); cerr << M << endl; } // prepare for new 3d image filelist.clear(); segresult.reInit(0,0,0); gt.reInit(0,0,0); depthCount = 0; idx++; imageno++; pb.update ( testFiles->count() ); } segresult.freeData(); pb.hide(); long maxMemory; rs.getMaximumMemory ( maxMemory ); cerr << "Maximum memory used: " << maxMemory << " KB" << endl; double overall = 0.0; double sumall = 0.0; NICE::Matrix M ( classNames.getMaxClassno() + 1, classNames.getMaxClassno() + 1 ); M.set ( 0 ); for ( int s = 0; s < ( int ) M_vec.size(); s++ ) { NICE::Matrix M_tmp = M_vec[s]; for ( int r = 0; r < ( int ) M_tmp.rows(); r++ ) { for ( int c = 0; c < ( int ) M_tmp.cols(); c++ ) { if ( r == c ) overall += M_tmp ( r, c ); sumall += M_tmp ( r, c ); M ( r, c ) += M_tmp ( r, c ); } } } overall /= sumall; // normalizing M using rows for ( int r = 0 ; r < ( int ) M.rows() ; r++ ) { double sum = 0.0; for ( int c = 0 ; c < ( int ) M.cols() ; c++ ) sum += M ( r, c ); if ( fabs ( sum ) > 1e-4 ) for ( int c = 0 ; c < ( int ) M.cols() ; c++ ) M ( r, c ) /= sum; } cerr << M << endl; double avg_perf = 0.0; int classes_trained = 0; for ( int r = 0 ; r < ( int ) M.rows() ; r++ ) { if ( ( classNames.existsClassno ( r ) ) && ( forbidden_classes.find ( r ) == forbidden_classes.end() ) ) { avg_perf += M ( r, r ); double lsum = 0.0; for ( int r2 = 0; r2 < ( int ) M.rows(); r2++ ) { lsum += M ( r,r2 ); } if ( lsum != 0.0 ) { classes_trained++; } } } if ( write_results ) { ofstream fout ( ( resultdir + "/res.txt" ).c_str(), ios::out ); fout << "overall: " << overall << endl; fout << "Average Performance " << avg_perf / ( classes_trained ) << endl; fout << "Lower Bound " << 1.0 / classes_trained << endl; for ( int r = 0 ; r < ( int ) M.rows() ; r++ ) { if ( ( classNames.existsClassno ( r ) ) && ( forbidden_classes.find ( r ) == forbidden_classes.end() ) ) { std::string classname = classNames.text ( r ); fout << classname.c_str() << ": " << M ( r, r ) << endl; } } fout.close(); } fprintf ( stderr, "overall: %f\n", overall ); fprintf ( stderr, "Average Performance %f\n", avg_perf / ( classes_trained ) ); //fprintf(stderr, "Lower Bound %f\n", 1.0 / classes_trained); for ( int r = 0 ; r < ( int ) M.rows() ; r++ ) { if ( ( classNames.existsClassno ( r ) ) && ( forbidden_classes.find ( r ) == forbidden_classes.end() ) ) { std::string classname = classNames.text ( r ); fprintf ( stderr, "%s: %f\n", classname.c_str(), M ( r, r ) ); } } delete semseg; return 0; }