// Beispielhafter Aufruf: BUILD_x86_64/progs/testActiveSemanticSegmentation -config /** * @file testActiveSemanticSegmentation.cpp * @brief test semantic segmentation routines with actively selecting regions for labeling * @author Alexander Freytag * @date 27-02-2013 */ #ifdef NICE_USELIB_OPENMP #include #endif #include "core/basics/Config.h" #include "core/basics/StringTools.h" #include #include #include #include #include #include #include #include "core/image/FilterT.h" #include #include using namespace OBJREC; using namespace NICE; using namespace std; void updateMatrix( const NICE::ImageT & img, const NICE::ImageT & gt, NICE::Matrix & M, const set & forbidden_classes ) { double subsamplex = gt.width() / ( double )img.width(); double subsampley = gt.height() / ( double )img.height(); for ( int y = 0 ; y < gt.height() ; y++ ) for ( int x = 0 ; x < gt.width() ; x++ ) { int xx = ( int )( x / subsamplex ); int yy = ( int )( y / subsampley ); if ( xx < 0 ) xx = 0; if ( yy < 0 ) yy = 0; if ( xx > img.width() - 1 ) xx = img.width() - 1; if ( yy > img.height() - 1 ) yy = img.height() - 1; int cimg = img.getPixel( xx, yy ); int gimg = gt.getPixel( x, y ); if ( forbidden_classes.find( gimg ) == forbidden_classes.end() ) { M( gimg, cimg )++; } } } /** test semantic segmentation routines */ int main( int argc, char **argv ) { std::set_terminate( __gnu_cxx::__verbose_terminate_handler ); Config conf( argc, argv ); ResourceStatistics rs; bool show_result = conf.gB( "debug", "show_results", false ); bool write_results = conf.gB( "debug", "write_results", false ); bool write_results_pascal = conf.gB( "debug", "write_results_pascal", false ); std::string resultdir = conf.gS( "debug", "resultdir", "." ); //how often do we want to iterate between sem-seg and active query? int activeIterations = conf.gI("main", "activeIterations", 1 ); if ( write_results ) { cerr << "Writing Results to " << resultdir << endl; } MultiDataset md( &conf ); const ClassNames & classNames = md.getClassNames( "train" ); string method = conf.gS( "main", "method", "SSCsurka" ); //currently, we only allow SemSegNovelty, because it implements addNovelExamples() SemanticSegmentation *semseg = NULL; Timer timer; timer.start(); if ( method == "SSCsurka" ) { semseg = new SemSegCsurka( &conf, &md ); } else if ( method == "SSContext" ) { semseg = new SemSegContextTree( &conf, &md ); } else if( method == "SSNovelty" ) { semseg = new SemSegNovelty( &conf, &md ); } else if( method == "SSNoveltyBinary" ) { semseg = new SemSegNoveltyBinary( &conf, &md ); } timer.stop(); std::cerr << "AL time for training: " << timer.getLast() << std::endl; const LabeledSet *testFiles = md["test"]; NICE::Matrix M( classNames.getMaxClassno() + 1, classNames.getMaxClassno() + 1 ); M.set( 0 ); std::set forbidden_classes; std::string forbidden_classes_s = conf.gS( "analysis", "forbidden_classesTrain", "" ); classNames.getSelection( forbidden_classes_s, forbidden_classes ); std::set forbidden_classesForActiveLearning; std::string forbidden_classesForActiveLearning_s = conf.gS( "analysis", "forbidden_classesForActiveLearning", "" ); classNames.getSelection( forbidden_classesForActiveLearning_s, forbidden_classesForActiveLearning ); for (int iterationCount = 0; iterationCount < activeIterations; iterationCount++) { //TODO shouldn't we clean the confusion matrix at the beginning of each iteration? std::cerr << "SemSeg AL Iteration: " << iterationCount << std::endl; semseg->setIterationCountSuffix(iterationCount); // ProgressBar pb( "Semantic Segmentation Analysis" ); // // pb.show(); int fileno = 0; std::cerr << "start looping over all files" << std::endl; LOOP_ALL_S( *testFiles ) { EACH_INFO( classno, info ); std::string file = info.img(); NICE::ImageT lm; NICE::MultiChannelImageT probabilities; if ( info.hasLocalizationInfo() ) { const LocalizationResult *l_gt = info.localization(); lm.resize( l_gt->xsize, l_gt->ysize ); //lm.set( 0 ); l_gt->calcLabeledImage( lm, classNames.getBackgroundClass() ); } semseg->semanticseg( file, lm, probabilities ); fprintf( stderr, "testSemanticSegmentation: Segmentation finished !\n" ); //ground truth image, needed for updating the confusion matrix //TODO check whether this is really needed, since we computed such a label image already within SemSegNovelty NICE::ImageT lm_gt; if ( info.hasLocalizationInfo() ) { const LocalizationResult *l_gt = info.localization(); lm_gt.resize( l_gt->xsize, l_gt->ysize ); lm_gt.set( 0 ); fprintf( stderr, "testSemanticSegmentation: Generating Labeled NICE::Image (Ground-Truth)\n" ); l_gt->calcLabeledImage( lm_gt, classNames.getBackgroundClass() ); } // // // // // // std::string fname = StringTools::baseName( file, false ); // // // // // // if ( write_results_pascal ) // // // { // // // // // // NICE::Image pascal_lm( lm.width(), lm.height() ); // // // int backgroundClass = classNames.getBackgroundClass(); // // // // // // for ( int y = 0 ; y < lm.height(); y++ ) // // // for ( int x = 0 ; x < lm.width(); x++ ) // // // { // // // int v = lm.getPixel( x, y ); // // // // // // if ( v == backgroundClass ) // // // pascal_lm.setPixel( x, y, 255 ); // // // else // // // pascal_lm.setPixel( x, y, 255 - v - 1 ); // // // } // // // // // // char filename[1024]; // // // // // // char *format = ( char * )"pgm"; // // // sprintf( filename, "%s/%s.%s", resultdir.c_str(), fname.c_str(), format ); // // // // // // pascal_lm.write( filename ); // // // } // // // if ( show_result || write_results ) { NICE::ColorImage orig( file ); NICE::ColorImage rgb; NICE::ColorImage rgb_gt; classNames.labelToRGB( lm, rgb ); classNames.labelToRGB( lm_gt, rgb_gt ); if ( write_results ) { // char filename[1024]; // char *format = ( char * )"ppm"; // sprintf( filename, "%06d.%s", fileno, format ); // std::string origfilename = resultdir + "/orig_" + string( filename ); // cerr << "Writing to file " << origfilename << endl; // orig.write( origfilename ); // rgb.write( resultdir + "/result_" + string( filename ) ); // rgb_gt.write( resultdir + "/groundtruth_" + string( filename ) ); std::stringstream out; std::vector< std::string > myList; StringTools::split ( Globals::getCurrentImgFN (), '/', myList ); out << resultdir << "/" << myList.back(); cerr << "Writing to file " << resultdir << "/"<< myList.back() << endl; std::string noveltyMethodString = conf.gS( "SemSegNovelty", "noveltyMethod", "gp-variance"); orig.write ( out.str() + "_orig.ppm" ); rgb.write ( out.str() + "_" + noveltyMethodString + "_result_run_" + NICE::intToString(iterationCount) + ".ppm" ); rgb_gt.write ( out.str() + "_groundtruth.ppm" ); } if ( show_result ) { #ifndef NOVISUAL showImage( rgb, "Result" ); showImage( rgb_gt, "Groundtruth" ); showImage( orig, "Input" ); #endif } } //#pragma omp critical updateMatrix( lm, lm_gt, M, forbidden_classes ); std::cerr << M << std::endl; fileno++; // pb.update( testFiles->count() ); } //Loop over all test images // pb.hide(); //********************************************** // EVALUATION // COMPUTE CONFUSION MAT AND FINAL SCORES //********************************************** timer.start(); long maxMemory; rs.getMaximumMemory(maxMemory); cerr << "Maximum memory used: " << maxMemory << " KB" << endl; double overall = 0.0; double sumall = 0.0; for ( int r = 0; r < ( int )M.rows(); r++ ) { for ( int c = 0; c < ( int )M.cols(); c++ ) { if ( r == c ) overall += M( r, c ); sumall += M( r, c ); } } overall /= sumall; // normalizing M using rows for ( int r = 0 ; r < ( int )M.rows() ; r++ ) { double sum = 0.0; for ( int c = 0 ; c < ( int )M.cols() ; c++ ) sum += M( r, c ); if ( fabs( sum ) > 1e-4 ) for ( int c = 0 ; c < ( int )M.cols() ; c++ ) M( r, c ) /= sum; } std::cerr << M << std::endl; double avg_perf = 0.0; int classes_trained = 0; for ( int r = 0 ; r < ( int )M.rows() ; r++ ) { if (( classNames.existsClassno( r ) ) && ( forbidden_classes.find( r ) == forbidden_classes.end() ) ) { avg_perf += M( r, r ); double lsum = 0.0; for(int r2 = 0; r2 < ( int )M.rows(); r2++) { lsum += M(r,r2); } if(lsum != 0.0) { classes_trained++; } } } if ( write_results ) { ofstream fout(( resultdir + "/res.txt" ).c_str(), ios::out ); fout << "overall: " << overall << endl; fout << "Average Performance " << avg_perf / ( classes_trained ) << endl; fout << "Lower Bound " << 1.0 / classes_trained << endl; for ( int r = 0 ; r < ( int )M.rows() ; r++ ) { if (( classNames.existsClassno( r ) ) && ( forbidden_classes.find( r ) == forbidden_classes.end() ) ) { std::string classname = classNames.text( r ); fout << classname.c_str() << ": " << M( r, r ) << endl; } } fout.close(); } fprintf( stderr, "overall: %f\n", overall ); fprintf( stderr, "Average Performance %f\n", avg_perf / ( classes_trained ) ); //fprintf(stderr, "Lower Bound %f\n", 1.0 / classes_trained); for ( int r = 0 ; r < ( int )M.rows() ; r++ ) { if (( classNames.existsClassno( r ) ) && ( forbidden_classes.find( r ) == forbidden_classes.end() ) ) { std::string classname = classNames.text( r ); fprintf( stderr, "%s: %f\n", classname.c_str(), M( r, r ) ); } } timer.stop(); std::cout << "AL time for evaluation: " << timer.getLastAbsolute() << std::endl; //********************************************** // READ QUERY SCORE IMAGES // AND SELECT THE REGION TO BE LABELED //********************************************** //NOTE this is not needed anymore, since we store everything within SemSegNovelty //However, it is still needed if we use the NN-classifier for the feature learning approach // string alSection = "SemSegNovelty"; // std::string noveltyMethodString = conf.gS( alSection, "noveltyMethod", "gp-variance"); // std::string uncertdir = conf.gS("debug", "resultdir", "result"); // int testWSize = conf.gI(alSection, "test_window_size", 10); // // float maxVal(0); // int maxValX(0); // int maxValY(0); // std::vector::const_iterator maxValInfoIt = testFiles->begin()->second.begin(); // // // for(LabeledSet::const_iterator outerIt = testFiles->begin() ; outerIt != testFiles->end() ; outerIt++) // { // for ( std::vector::const_iterator imageIt = outerIt->second.begin(); imageIt != outerIt->second.end(); imageIt++ ) // { // const ImageInfo & (info) = *(*imageIt); // // std::string file = info.img(); // // std::stringstream dest; // std::vector< std::string > list2; // StringTools::split ( file, '/', list2 ); // dest << uncertdir << "/" << list2.back(); // // FloatImage noveltyImage; // noveltyImage.readRaw(dest.str() + "_run_" + NICE::intToString(iterationCount) + "_" + noveltyMethodString+".rawfloat"); // // int xsize ( noveltyImage.width() ); // int ysize ( noveltyImage.height() ); // // //compute the GT-image to ensure that we only query "useful" new features, i.e., not query background or similar "forbidden" stuff // NICE::Image lm_gt; // if ( (*maxValInfoIt)->hasLocalizationInfo() ) // { // const LocalizationResult *l_gt = (*maxValInfoIt)->localization(); // // lm_gt.resize( l_gt->xsize, l_gt->ysize ); // lm_gt.set( 0 ); // // l_gt->calcLabeledImage( lm_gt, classNames.getBackgroundClass() ); // } // // for ( int y = 0; y < ysize; y += testWSize ) // { // for ( int x = 0; x < xsize; x += testWSize) // { // if ( (noveltyImage ( x, y ) > maxVal) && ( forbidden_classesForActiveLearning.find ( lm_gt(x, y) ) == forbidden_classesForActiveLearning.end() ) ) // { // maxVal = noveltyImage ( x, y ); // maxValX = x; // maxValY = y; // maxValInfoIt = imageIt; // } // } // } // // }//iterate over inner loop // }//iterate over testFiles // // // std::cerr << "maxVal: " << maxVal << " maxValX: " << maxValX << " maxValY: " << maxValY << " maxValInfo: " << (*maxValInfoIt)->img() << std::endl; //********************************************** // INCLUDE THE NEW INFORMATION // AND UPDATE THE CLASSIFIER //********************************************** timer.start(); semseg->addNovelExamples(); timer.stop(); std::cout << "AL time for incremental update: " << timer.getLastAbsolute() << std::endl; //alternatively, we could call the destructor of semseg, and create it again, which does the same thing // (add new features, save the classifier, re-read it after initialization) //BUT this would not setup the forbidden and known classes properly!!! We should fix that! const Examples * novelExamples = semseg->getNovelExamples(); // std::cerr << " ==================================== " << std::endl; // std::cerr << "new examples to be added: " << std::endl; // for ( uint i = 0 ; i < novelExamples->size() ; i++ ) // { // std::cerr << (*novelExamples)[i].first << " "; (*novelExamples)[i].second.store(std::cerr); // } // std::cerr << " ==================================== " << std::endl; //check which classes will be added using the features from the novel region std::set newClassNumbers; newClassNumbers.clear(); //just to be sure for ( uint i = 0 ; i < novelExamples->size() ; i++ ) { if (newClassNumbers.find( (*novelExamples)[i].first /* classNumber*/) == newClassNumbers.end() ) { newClassNumbers.insert( (*novelExamples)[i].first ); } } //accept the new classes as valid information for (std::set::const_iterator clNoIt = newClassNumbers.begin(); clNoIt != newClassNumbers.end(); clNoIt++) { if ( forbidden_classes.find ( *clNoIt ) != forbidden_classes.end() ) { forbidden_classes.erase(*clNoIt); } } //NOTE Below comes the old version: // it is not needed anymore, since we store everything within SemSegNovelty //However, it is still needed if we use the NN-classifier for the feature learning approach // // ---------------------------------------------------- // // therefore, we first recompute the features for the whole image and // //take the one which we desire // // //this is NOT efficient, but a nice and easy first step // // NICE::ColorImage img ( (*maxValInfoIt)->img() ); // // MultiChannelImageT feats; // // // extract features // LFColorWeijer * featExtract = new LFColorWeijer ( &conf ); // featExtract->getFeats ( img, feats ); // int featdim = feats.channels(); // feats.addChannel(featdim); // // for (int c = 0; c < featdim; c++) // { // ImageT tmp = feats[c]; // ImageT tmp2 = feats[c+featdim]; // // NICE::FilterT::gradientStrength (tmp, tmp2); // } // featdim += featdim; // // // compute integral images // for ( int c = 0; c < featdim; c++ ) // { // feats.calcIntegral ( c ); // } // // // ---------------------------------------------------- // //now take the feature // NICE::Vector newFeature(featdim); // for ( int f = 0; f < featdim; f++ ) // { // double val = feats.getIntegralValue ( maxValX - testWSize, maxValY - testWSize, maxValX + testWSize, maxValY + testWSize, f ); // newFeature[f] = val; // } // newFeature.normalizeL1(); // // NICE::Image lm_gt; // // take the gt class number as well // if ( (*maxValInfoIt)->hasLocalizationInfo() ) // { // const LocalizationResult *l_gt = (*maxValInfoIt)->localization(); // // lm_gt.resize( l_gt->xsize, l_gt->ysize ); // lm_gt.set( 0 ); // // l_gt->calcLabeledImage( lm_gt, classNames.getBackgroundClass() ); // } // int classNoGT = lm_gt(maxValX, maxValY); // std::cerr << "class number GT: " << classNoGT << std::endl; // // // semseg->addNewExample(newFeature, classNoGT); // // //accept the new class as valid information // if ( forbidden_classes.find ( classNoGT ) != forbidden_classes.end() ) // { // forbidden_classes.erase(classNoGT); // } std::cerr << "iteration finished - start the next round" << std::endl; } //iterationCount delete semseg; return 0; }