12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163 |
- #include "SemSegContextTree.h"
- #include "vislearning/baselib/Globals.h"
- #include "vislearning/baselib/ProgressBar.h"
- #include "core/basics/StringTools.h"
- #include "vislearning/cbaselib/CachedExample.h"
- #include "vislearning/cbaselib/PascalResults.h"
- #include "objrec/segmentation/RSMeanShift.h"
- #include "objrec/segmentation/RSGraphBased.h"
- #include "core/basics/numerictools.h"
- #include <omp.h>
- #include <iostream>
- #define BOUND(x,min,max) (((x)<(min))?(min):((x)>(max)?(max):(x)))
- #undef LOCALFEATS
- //#define LOCALFEATS
- using namespace OBJREC;
- using namespace std;
- using namespace NICE;
- class Minus:public Operation
- {
- public:
- virtual double getVal(const NICE::MultiChannelImageT<double> &feats, const MultiChannelImageT<int> &cfeats, const int &cTree, const std::vector<TreeNode> &tree, NICE::MultiChannelImageT<double> &integralImg, const int &x, const int &y)
- {
- int xsize = feats.width();
- int ysize = feats.height();
- double v1 = feats.get(BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),channel1);
- double v2 = feats.get(BOUND(x+x2,0,xsize-1),BOUND(y+y2,0,ysize-1),channel2);
- return v1-v2;
- }
-
- virtual Operation* clone()
- {
- return new Minus();
- }
-
- virtual string writeInfos()
- {
- return "Minus";
- }
- };
- class MinusAbs:public Operation
- {
- public:
- virtual double getVal(const NICE::MultiChannelImageT<double> &feats, const MultiChannelImageT<int> &cfeats, const int &cTree, const std::vector<TreeNode> &tree, NICE::MultiChannelImageT<double> &integralImg, const int &x, const int &y)
- {
- int xsize = feats.width();
- int ysize = feats.height();
- double v1 = feats.get(BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),channel1);
- double v2 = feats.get(BOUND(x+x2,0,xsize-1),BOUND(y+y2,0,ysize-1),channel2);
- return abs(v1-v2);
- }
-
- virtual Operation* clone()
- {
- return new MinusAbs();
- };
-
- virtual string writeInfos()
- {
- return "MinusAbs";
- }
- };
- class Addition:public Operation
- {
- public:
- virtual double getVal(const NICE::MultiChannelImageT<double> &feats, const MultiChannelImageT<int> &cfeats, const int &cTree, const std::vector<TreeNode> &tree, NICE::MultiChannelImageT<double> &integralImg, const int &x, const int &y)
- {
- int xsize = feats.width();
- int ysize = feats.height();
- double v1 = feats.get(BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),channel1);
- double v2 = feats.get(BOUND(x+x2,0,xsize-1),BOUND(y+y2,0,ysize-1),channel2);
- return v1+v2;
- }
-
- virtual Operation* clone()
- {
- return new Addition();
- }
-
- virtual string writeInfos()
- {
- return "Addition";
- }
- };
- class Only1:public Operation
- {
- public:
- virtual double getVal(const NICE::MultiChannelImageT<double> &feats, const MultiChannelImageT<int> &cfeats, const int &cTree, const std::vector<TreeNode> &tree, NICE::MultiChannelImageT<double> &integralImg, const int &x, const int &y)
- {
- int xsize = feats.width();
- int ysize = feats.height();
- double v1 = feats.get(BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),channel1);
- return v1;
- }
-
- virtual Operation* clone()
- {
- return new Only1();
- }
-
- virtual string writeInfos()
- {
- return "Only1";
- }
- };
- class ContextMinus:public Operation
- {
- public:
- virtual double getVal(const NICE::MultiChannelImageT<double> &feats, const MultiChannelImageT<int> &cfeats, const int &cTree, const std::vector<TreeNode> &tree, NICE::MultiChannelImageT<double> &integralImg, const int &x, const int &y)
- {
- int xsize = feats.width();
- int ysize = feats.height();
- double v1 = tree[cfeats.get(BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),cTree)].dist[channel1];
- double v2 = tree[cfeats.get(BOUND(x+x2,0,xsize-1),BOUND(y+y2,0,ysize-1),cTree)].dist[channel2];
- return v1-v2;
- }
-
- virtual Operation* clone()
- {
- return new ContextMinus();
- }
-
- virtual string writeInfos()
- {
- return "ContextMinus";
- }
- };
- class ContextMinusAbs:public Operation
- {
- public:
- virtual double getVal(const NICE::MultiChannelImageT<double> &feats, const MultiChannelImageT<int> &cfeats, const int &cTree, const std::vector<TreeNode> &tree, NICE::MultiChannelImageT<double> &integralImg, const int &x, const int &y)
- {
- int xsize = feats.width();
- int ysize = feats.height();
- double v1 = tree[cfeats.get(BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),cTree)].dist[channel1];
- double v2 = tree[cfeats.get(BOUND(x+x2,0,xsize-1),BOUND(y+y2,0,ysize-1),cTree)].dist[channel2];
- return abs(v1-v2);
- }
-
- virtual Operation* clone()
- {
- return new ContextMinusAbs();
- }
-
- virtual string writeInfos()
- {
- return "ContextMinusAbs";
- }
- };
- class ContextAddition:public Operation
- {
- public:
- virtual double getVal(const NICE::MultiChannelImageT<double> &feats, const MultiChannelImageT<int> &cfeats, const int &cTree, const std::vector<TreeNode> &tree, NICE::MultiChannelImageT<double> &integralImg, const int &x, const int &y)
- {
- int xsize = feats.width();
- int ysize = feats.height();
- double v1 = tree[cfeats.get(BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),cTree)].dist[channel1];
- double v2 = tree[cfeats.get(BOUND(x+x2,0,xsize-1),BOUND(y+y2,0,ysize-1),cTree)].dist[channel2];
- return v1+v2;
- }
-
- virtual Operation* clone()
- {
- return new ContextAddition();
- }
-
- virtual string writeInfos()
- {
- return "ContextAddition";
- }
- };
- class ContextOnly1:public Operation
- {
- public:
- virtual double getVal(const NICE::MultiChannelImageT<double> &feats, const MultiChannelImageT<int> &cfeats, const int &cTree, const std::vector<TreeNode> &tree, NICE::MultiChannelImageT<double> &integralImg, const int &x, const int &y)
- {
- int xsize = feats.width();
- int ysize = feats.height();
- double v1 = tree[cfeats.get(BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),cTree)].dist[channel1];
- return v1;
- }
-
- virtual Operation* clone()
- {
- return new ContextOnly1();
- }
-
- virtual string writeInfos()
- {
- return "ContextOnly1";
- }
- };
- // uses mean of classification in window given by (x1,y1) (x2,y2)
- class IntegralOps:public Operation
- {
- public:
- virtual void set(int _x1, int _y1, int _x2, int _y2, int _channel1, int _channel2)
- {
- x1 = min(_x1,_x2);
- y1 = min(_y1,_y2);
- x2 = max(_x1,_x2);
- y2 = max(_y1,_y2);
- channel1 = _channel1;
- channel2 = _channel2;
- }
-
- virtual double getVal(const NICE::MultiChannelImageT<double> &feats, const MultiChannelImageT<int> &cfeats, const int &cTree, const std::vector<TreeNode> &tree, NICE::MultiChannelImageT<double> &integralImg, const int &x, const int &y)
- {
- int xsize = feats.width();
- int ysize = feats.height();
- return computeMean(integralImg,BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),BOUND(x+x2,0,xsize-1),BOUND(y+y2,0,ysize-1),channel1);
- }
-
- inline double computeMean(const NICE::MultiChannelImageT<double> &intImg, const int &uLx, const int &uLy, const int &lRx, const int &lRy, const int &chan)
- {
- double val1 = intImg.get(uLx,uLy, chan);
- double val2 = intImg.get(lRx,uLy, chan);
- double val3 = intImg.get(uLx,lRy, chan);
- double val4 = intImg.get(lRx,lRy, chan);
- double area = (lRx-uLx)*(lRy-uLy);
- return (val1+val4-val2-val3)/area;
- }
-
- virtual Operation* clone()
- {
- return new IntegralOps();
- }
-
- virtual string writeInfos()
- {
- return "IntegralOps";
- }
- };
- //uses mean of Integral image given by x1, y1 with current pixel as center
- class IntegralCenteredOps:public IntegralOps
- {
- public:
- virtual void set(int _x1, int _y1, int _x2, int _y2, int _channel1, int _channel2)
- {
- x1 = min(_x1,-_x1);
- y1 = min(_y1,-_y1);
- x2 = -x1;
- y2 = -y1;
- channel1 = _channel1;
- channel2 = _channel2;
- }
-
- virtual Operation* clone()
- {
- return new IntegralCenteredOps();
- }
-
- virtual string writeInfos()
- {
- return "IntegralCenteredOps";
- }
- };
- //uses different of mean of Integral image given by two windows, where (x1,y1) is the width and height of window1 and (x2,y2) of window 2
- class BiIntegralCenteredOps:public IntegralOps
- {
- public:
- virtual void set(int _x1, int _y1, int _x2, int _y2, int _channel1, int _channel2)
- {
- x1 = min(abs(_x1),abs(_x2));
- y1 = min(abs(_y1),abs(_y2));
- x2 = max(abs(_x1),abs(_x2));
- y2 = max(abs(_y1),abs(_y2));
- channel1 = _channel1;
- channel2 = _channel2;
- }
-
- virtual double getVal(const NICE::MultiChannelImageT<double> &feats, const MultiChannelImageT<int> &cfeats, const int &cTree, const std::vector<TreeNode> &tree, NICE::MultiChannelImageT<double> &integralImg, const int &x, const int &y)
- {
- int xsize = feats.width();
- int ysize = feats.height();
- return computeMean(integralImg,BOUND(x-x1,0,xsize-1),BOUND(y-y1,0,ysize-1),BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),channel1) - computeMean(integralImg,BOUND(x-x2,0,xsize-1),BOUND(y-y2,0,ysize-1),BOUND(x+x2,0,xsize-1),BOUND(y+y2,0,ysize-1),channel1);
- }
-
- virtual Operation* clone()
- {
- return new BiIntegralCenteredOps();
- }
-
- virtual string writeInfos()
- {
- return "BiIntegralCenteredOps";
- }
- };
- SemSegContextTree::SemSegContextTree( const Config *conf, const MultiDataset *md )
- : SemanticSegmentation ( conf, &(md->getClassNames("train")) )
- {
- this->conf = conf;
- string section = "SSContextTree";
- lfcw = new LFColorWeijer(conf);
-
- grid = conf->gI(section, "grid", 10 );
-
- maxSamples = conf->gI(section, "max_samples", 2000);
-
- minFeats = conf->gI(section, "min_feats", 50 );
-
- maxDepth = conf->gI(section, "max_depth", 10 );
-
- windowSize = conf->gI(section, "window_size", 16);
-
- featsPerSplit = conf->gI(section, "feats_per_split", 200);
-
- useShannonEntropy = conf->gB(section, "use_shannon_entropy", true);
-
- string segmentationtype = conf->gS(section, "segmentation_type", "meanshift");
-
- useGaussian = conf->gB(section, "use_gaussian", true);
- if(useGaussian)
- throw("there something wrong with using gaussian! first fix it!");
-
- pixelWiseLabeling = false;
-
- if(segmentationtype == "meanshift")
- segmentation = new RSMeanShift(conf);
- else if (segmentationtype == "none")
- {
- segmentation = NULL;
- pixelWiseLabeling = true;
- }
- else if (segmentationtype == "felzenszwalb")
- segmentation = new RSGraphBased(conf);
- else
- throw("no valid segmenation_type\n please choose between none, meanshift and felzenszwalb\n");
-
-
- ftypes = conf->gI(section, "features", 2);;
-
- ops.push_back(new Minus());
- ops.push_back(new MinusAbs());
- ops.push_back(new Addition());
- ops.push_back(new Only1());
-
- cops.push_back(new ContextMinus());
- cops.push_back(new ContextMinusAbs());
- cops.push_back(new ContextAddition());
- cops.push_back(new ContextOnly1());
- cops.push_back(new BiIntegralCenteredOps());
- cops.push_back(new IntegralCenteredOps());
- cops.push_back(new IntegralOps());
-
- classnames = md->getClassNames ( "train" );
-
- ///////////////////////////////////
- // Train Segmentation Context Trees
- ///////////////////////////////////
- train ( md );
- }
- SemSegContextTree::~SemSegContextTree()
- {
- }
- double SemSegContextTree::getBestSplit(const std::vector<NICE::MultiChannelImageT<double> > &feats, std::vector<NICE::MultiChannelImageT<int> > ¤tfeats, std::vector<NICE::MultiChannelImageT<double> > &integralImgs, const std::vector<NICE::MatrixT<int> > &labels, int node, Operation *&splitop, double &splitval, const int &tree)
- {
- int imgCount = 0, featdim = 0;
- try
- {
- imgCount = (int)feats.size();
- featdim = feats[0].channels();
- }
- catch(Exception)
- {
- cerr << "no features computed?" << endl;
- }
- double bestig = -numeric_limits< double >::max();
- splitop = NULL;
- splitval = -1.0;
-
- set<vector<int> >selFeats;
- map<int,int> e;
- int featcounter = 0;
- for(int iCounter = 0; iCounter < imgCount; iCounter++)
- {
- int xsize = (int)currentfeats[iCounter].width();
- int ysize = (int)currentfeats[iCounter].height();
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- if(currentfeats[iCounter].get(x,y,tree) == node)
- {
- featcounter++;
- }
- }
- }
- }
- if(featcounter < minFeats)
- {
- cout << "only " << featcounter << " feats in current node -> it's a leaf" << endl;
- return 0.0;
- }
-
- vector<double> fraction(a.size(),0.0);
- for(uint i = 0; i < fraction.size(); i++)
- {
- if ( forbidden_classes.find ( labelmapback[i] ) != forbidden_classes.end() )
- fraction[i] = 0;
- else
- fraction[i] = ((double)maxSamples)/((double)featcounter*a[i]*a.size());
- //cout << "fraction["<<i<<"]: "<< fraction[i] << " a[" << i << "]: " << a[i] << endl;
- }
- //cout << "a.size(): " << a.size() << endl;
- //getchar();
- featcounter = 0;
- for(int iCounter = 0; iCounter < imgCount; iCounter++)
- {
- int xsize = (int)currentfeats[iCounter].width();
- int ysize = (int)currentfeats[iCounter].height();
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- if(currentfeats[iCounter].get(x,y,tree) == node)
- {
- int cn = labels[iCounter](x,y);
- double randD = (double)rand()/(double)RAND_MAX;
- if(randD < fraction[labelmap[cn]])
- {
- vector<int> tmp(3,0);
- tmp[0] = iCounter;
- tmp[1] = x;
- tmp[2] = y;
- featcounter++;
- selFeats.insert(tmp);
- e[cn]++;
- }
- }
- }
- }
- }
- //cout << "size: " << selFeats.size() << endl;
- //getchar();
-
- map<int,int>::iterator mapit;
- double globent = 0.0;
- for ( mapit=e.begin() ; mapit != e.end(); mapit++ )
- {
- //cout << "class: " << mapit->first << ": " << mapit->second << endl;
- double p = (double)(*mapit).second/(double)featcounter;
- globent += p*log2(p);
- }
- globent = -globent;
-
- if(globent < 0.5)
- {
- cout << "globent to small: " << globent << endl;
- return 0.0;
- }
- int classes = (int)forest[tree][0].dist.size();
- featsel.clear();
- for(int i = 0; i < featsPerSplit; i++)
- {
- int x1, x2, y1, y2;
- int ft = (int)((double)rand()/(double)RAND_MAX*(double)ftypes);
-
- int tmpws = windowSize;
-
- if(integralImgs[0].width() == 0)
- ft = 0;
-
- if(ft > 0)
- {
- tmpws *= 2;
- }
-
- if(useGaussian)
- {
- double sigma = (double)tmpws/2.0;
- x1 = randGaussDouble(sigma)*(double)tmpws;
- x2 = randGaussDouble(sigma)*(double)tmpws;
- y1 = randGaussDouble(sigma)*(double)tmpws;
- y2 = randGaussDouble(sigma)*(double)tmpws;
- }
- else
- {
- x1 = (int)((double)rand()/(double)RAND_MAX*(double)tmpws)-tmpws/2;
- x2 = (int)((double)rand()/(double)RAND_MAX*(double)tmpws)-tmpws/2;
- y1 = (int)((double)rand()/(double)RAND_MAX*(double)tmpws)-tmpws/2;
- y2 = (int)((double)rand()/(double)RAND_MAX*(double)tmpws)-tmpws/2;
- }
-
- if(ft == 0)
- {
- int f1 = (int)((double)rand()/(double)RAND_MAX*(double)featdim);
- int f2 = (int)((double)rand()/(double)RAND_MAX*(double)featdim);
- int o = (int)((double)rand()/(double)RAND_MAX*(double)ops.size());
- Operation *op = ops[o]->clone();
- op->set(x1,y1,x2,y2,f1,f2);
- featsel.push_back(op);
- }
- else if(ft == 1)
- {
- int f1 = (int)((double)rand()/(double)RAND_MAX*(double)classes);
- int f2 = (int)((double)rand()/(double)RAND_MAX*(double)classes);
- int o = (int)((double)rand()/(double)RAND_MAX*(double)cops.size());
- Operation *op = cops[o]->clone();
- op->set(x1,y1,x2,y2,f1,f2);
- featsel.push_back(op);
- }
- }
-
- #pragma omp parallel for private(mapit)
- for(int f = 0; f < featsPerSplit; f++)
- {
- double l_bestig = -numeric_limits< double >::max();
- double l_splitval = -1.0;
- set<vector<int> >::iterator it;
- vector<double> vals;
-
- for ( it=selFeats.begin() ; it != selFeats.end(); it++ )
- {
- vals.push_back(featsel[f]->getVal(feats[(*it)[0]],currentfeats[(*it)[0]], tree, forest[tree], integralImgs[(*it)[0]], (*it)[1], (*it)[2]));
- }
-
- int counter = 0;
- for ( it=selFeats.begin() ; it != selFeats.end(); it++ , counter++)
- {
- set<vector<int> >::iterator it2;
- double val = vals[counter];
-
- map<int,int> eL, eR;
- int counterL = 0, counterR = 0;
- int counter2 = 0;
- for ( it2=selFeats.begin() ; it2 != selFeats.end(); it2++, counter2++ )
- {
- int cn = labels[(*it2)[0]]((*it2)[1], (*it2)[2]);
- //cout << "vals[counter2] " << vals[counter2] << " val: " << val << endl;
- if(vals[counter2] < val)
- {
- //left entropie:
- eL[cn] = eL[cn]+1;
- counterL++;
- }
- else
- {
- //right entropie:
- eR[cn] = eR[cn]+1;
- counterR++;
- }
- }
-
- double leftent = 0.0;
- for ( mapit=eL.begin() ; mapit != eL.end(); mapit++ )
- {
- double p = (double)(*mapit).second/(double)counterL;
- leftent -= p*log2(p);
- }
-
- double rightent = 0.0;
- for ( mapit=eR.begin() ; mapit != eR.end(); mapit++ )
- {
- double p = (double)(*mapit).second/(double)counterR;
- rightent -= p*log2(p);
- }
- //cout << "rightent: " << rightent << " leftent: " << leftent << endl;
-
- double pl = (double)counterL/(double)(counterL+counterR);
- double ig = globent - (1.0-pl) * rightent - pl*leftent;
- //double ig = globent - rightent - leftent;
-
- if(useShannonEntropy)
- {
- double esplit = - ( pl*log(pl) + (1-pl)*log(1-pl) );
- ig = 2*ig / ( globent + esplit );
- }
-
- if(ig > l_bestig)
- {
- l_bestig = ig;
- l_splitval = val;
- }
- }
-
- #pragma omp critical
- {
- //cout << "globent: " << globent << " bestig " << bestig << " splitfeat: " << splitfeat << " splitval: " << splitval << endl;
- //cout << "globent: " << globent << " l_bestig " << l_bestig << " f: " << p << " l_splitval: " << l_splitval << endl;
- //cout << "p: " << featsubset[f] << endl;
- if(l_bestig > bestig)
- {
- bestig = l_bestig;
- splitop = featsel[f];
- splitval = l_splitval;
- }
- }
- }
- //splitop->writeInfos();
- //cout<< "ig: " << bestig << endl;
-
- /*for(int i = 0; i < featsPerSplit; i++)
- {
- if(featsel[i] != splitop)
- delete featsel[i];
- }*/
- #ifdef debug
- cout << "globent: " << globent << " bestig " << bestig << " splitval: " << splitval << endl;
- #endif
- return bestig;
- }
- inline double SemSegContextTree::getMeanProb(const int &x,const int &y,const int &channel, const MultiChannelImageT<int> ¤tfeats)
- {
- double val = 0.0;
- for(int tree = 0; tree < nbTrees; tree++)
- {
- val += forest[tree][currentfeats.get(x,y,tree)].dist[channel];
- }
-
- return val / (double)nbTrees;
- }
- void SemSegContextTree::computeIntegralImage(const NICE::MultiChannelImageT<int> ¤tfeats, NICE::MultiChannelImageT<double> &integralImage)
- {
- int xsize = currentfeats.width();
- int ysize = currentfeats.height();
-
- int channels = (int)labelmap.size();
- #pragma omp parallel for
- for(int c = 0; c < channels; c++)
- {
- integralImage.set(0,0,getMeanProb(0,0,c, currentfeats), c);
-
- //first column
- for(int y = 1; y < ysize; y++)
- {
- integralImage.set(0,y,getMeanProb(0,y,c, currentfeats)+integralImage.get(0,y,c), c);
- }
-
- //first row
- for(int x = 1; x < xsize; x++)
- {
- integralImage.set(x,0,getMeanProb(x,0,c, currentfeats)+integralImage.get(x,0,c), c);
- }
-
- //rest
- for(int y = 1; y < ysize; y++)
- {
- for(int x = 1; x < xsize; x++)
- {
- double val = getMeanProb(x,y,c,currentfeats)+integralImage.get(x,y-1,c)+integralImage.get(x-1,y,c)-integralImage.get(x-1,y-1,c);
- integralImage.set(x, y, val, c);
- }
- }
- }
- }
- void SemSegContextTree::train ( const MultiDataset *md )
- {
- const LabeledSet train = * ( *md ) ["train"];
- const LabeledSet *trainp = &train;
-
- ProgressBar pb ( "compute feats" );
- pb.show();
-
- //TODO: Speichefresser!, lohnt sich sparse?
- vector<MultiChannelImageT<double> > allfeats;
- vector<MultiChannelImageT<int> > currentfeats;
- vector<MatrixT<int> > labels;
- std::string forbidden_classes_s = conf->gS ( "analysis", "donttrain", "" );
- if ( forbidden_classes_s == "" )
- {
- forbidden_classes_s = conf->gS ( "analysis", "forbidden_classes", "" );
- }
-
- classnames.getSelection ( forbidden_classes_s, forbidden_classes );
-
- int imgcounter = 0;
-
- LOOP_ALL_S ( *trainp )
- {
- EACH_INFO ( classno,info );
- NICE::ColorImage img;
- std::string currentFile = info.img();
- CachedExample *ce = new CachedExample ( currentFile );
- const LocalizationResult *locResult = info.localization();
- if ( locResult->size() <= 0 )
- {
- fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
- currentFile.c_str() );
- continue;
- }
- fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n", currentFile.c_str() );
- int xsize, ysize;
- ce->getImageSize ( xsize, ysize );
-
- MultiChannelImageT<int> tmp(xsize, ysize, nbTrees);
- MatrixT<int> tmpMat(xsize,ysize);
- currentfeats.push_back(tmp);
- labels.push_back(tmpMat);
- try {
- img = ColorImage(currentFile);
- } catch (Exception) {
- cerr << "SemSeg: error opening image file <" << currentFile << ">" << endl;
- continue;
- }
- Globals::setCurrentImgFN ( currentFile );
- //TODO: resize image?!
- MultiChannelImageT<double> feats;
- allfeats.push_back(feats);
- #ifdef LOCALFEATS
- lfcw->getFeats(img, allfeats[imgcounter]);
- #else
- allfeats[imgcounter].reInit(xsize, ysize, 3, true);
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- for(int r = 0; r < 3; r++)
- {
- allfeats[imgcounter].set(x,y,img.getPixel(x,y,r),r);
- }
- }
- }
- #endif
-
- // getting groundtruth
- NICE::Image pixelLabels (xsize, ysize);
- pixelLabels.set(0);
- locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- classno = pixelLabels.getPixel(x, y);
- labels[imgcounter](x,y) = classno;
- if ( forbidden_classes.find ( classno ) != forbidden_classes.end() )
- continue;
- labelcounter[classno]++;
-
- }
- }
- imgcounter++;
- pb.update ( trainp->count());
- delete ce;
- }
- pb.hide();
-
- map<int,int>::iterator mapit;
- int classes = 0;
- for(mapit = labelcounter.begin(); mapit != labelcounter.end(); mapit++)
- {
- labelmap[mapit->first] = classes;
-
- labelmapback[classes] = mapit->first;
- classes++;
- }
-
- //balancing
- int featcounter = 0;
- a = vector<double>(classes,0.0);
- for(int iCounter = 0; iCounter < imgcounter; iCounter++)
- {
- int xsize = (int)currentfeats[iCounter].width();
- int ysize = (int)currentfeats[iCounter].height();
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- featcounter++;
- int cn = labels[iCounter](x,y);
- a[labelmap[cn]] ++;
- }
- }
- }
-
- for(int i = 0; i < (int)a.size(); i++)
- {
- a[i] /= (double)featcounter;
- }
-
- #ifdef DEBUG
- for(int i = 0; i < (int)a.size(); i++)
- {
- cout << "a["<<i<<"]: " << a[i] << endl;
- }
- cout << "a.size: " << a.size() << endl;
- #endif
-
- int depth = 0;
- for(int t = 0; t < nbTrees; t++)
- {
- vector<TreeNode> tree;
- tree.push_back(TreeNode());
- tree[0].dist = vector<double>(classes,0.0);
- tree[0].depth = depth;
- forest.push_back(tree);
- }
-
- vector<int> startnode(nbTrees,0);
- bool allleaf = false;
- //int baseFeatSize = allfeats[0].size();
-
- vector<MultiChannelImageT<double> > integralImgs(imgcounter,MultiChannelImageT<double>());
-
- while(!allleaf && depth < maxDepth)
- {
- allleaf = true;
- for(int tree = 0; tree < nbTrees; tree++)
- {
- int t = (int) forest[tree].size();
- int s = startnode[tree];
- startnode[tree] = t;
- vector<MultiChannelImageT<int> > lastfeats = currentfeats;
- //TODO vielleicht parallel wenn nächste schleife trotzdem noch parallelsiert würde, die hat mehr gewicht
- //#pragma omp parallel for
- for(int i = s; i < t; i++)
- {
- if(!forest[tree][i].isleaf && forest[tree][i].left < 0)
- {
- Operation *splitfeat = NULL;
- double splitval;
-
- double bestig = getBestSplit(allfeats, lastfeats, integralImgs, labels, i, splitfeat, splitval, tree);
- forest[tree][i].feat = splitfeat;
- forest[tree][i].decision = splitval;
-
- if(splitfeat != NULL)
- {
- allleaf = false;
- int left = forest[tree].size();
- forest[tree].push_back(TreeNode());
- forest[tree].push_back(TreeNode());
- int right = left+1;
- forest[tree][i].left = left;
- forest[tree][i].right = right;
- forest[tree][left].dist = vector<double>(classes, 0.0);
- forest[tree][right].dist = vector<double>(classes, 0.0);
- forest[tree][left].depth = depth+1;
- forest[tree][right].depth = depth+1;
-
- #pragma omp parallel for
- for(int iCounter = 0; iCounter < imgcounter; iCounter++)
- {
- int xsize = currentfeats[iCounter].width();
- int ysize = currentfeats[iCounter].height();
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- if(currentfeats[iCounter].get(x, y, t) == i)
- {
- double val = splitfeat->getVal(allfeats[iCounter],lastfeats[iCounter], tree, forest[tree], integralImgs[iCounter],x,y);
- if(val < splitval)
- {
- currentfeats[iCounter].set(x,y,left,t);
- forest[tree][left].dist[labelmap[labels[iCounter](x,y)]]++;
- }
- else
- {
- currentfeats[iCounter].set(x,y,right,t);
- forest[tree][right].dist[labelmap[labels[iCounter](x,y)]]++;
- }
- }
- }
- }
- }
-
- double lcounter = 0.0, rcounter = 0.0;
- for(uint d = 0; d < forest[tree][left].dist.size(); d++)
- {
- if ( forbidden_classes.find ( labelmapback[d] ) != forbidden_classes.end() )
- {
- forest[tree][left].dist[d] = 0;
- forest[tree][right].dist[d] = 0;
- }
- else
- {
- forest[tree][left].dist[d]/=a[d];
- lcounter +=forest[tree][left].dist[d];
- forest[tree][right].dist[d]/=a[d];
- rcounter +=forest[tree][right].dist[d];
- }
- }
-
- if(lcounter <= 0 || rcounter <= 0)
- {
- cout << "lcounter : " << lcounter << " rcounter: " << rcounter << endl;
- cout << "splitval: " << splitval << " splittype: " << splitfeat->writeInfos() << endl;
- cout << "bestig: " << bestig << endl;
- for(int iCounter = 0; iCounter < imgcounter; iCounter++)
- {
- int xsize = currentfeats[iCounter].width();
- int ysize = currentfeats[iCounter].height();
- int counter = 0;
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- if(lastfeats[iCounter].get(x,y,tree) == i)
- {
- if(++counter > 30)
- break;
- double val = splitfeat->getVal(allfeats[iCounter],lastfeats[iCounter], tree, forest[tree], integralImgs[iCounter],x,y);
- cout << "splitval: " << splitval << " val: " << val << endl;
- }
- }
- }
- }
- assert(lcounter > 0 && rcounter > 0);
- }
- for(uint d = 0; d < forest[tree][left].dist.size(); d++)
- {
- forest[tree][left].dist[d]/=lcounter;
- forest[tree][right].dist[d]/=rcounter;
- }
- }
- else
- {
- forest[tree][i].isleaf = true;
- }
- }
- }
- //TODO: features neu berechnen!
-
- //compute integral image
- int channels = (int)labelmap.size();
-
- if(integralImgs[0].width() == 0)
- {
- for(int i = 0; i < imgcounter; i++)
- {
- int xsize = allfeats[i].width();
- int ysize = allfeats[i].height();
-
- integralImgs[i].reInit(xsize, ysize, channels);
- }
- }
-
- for(int i = 0; i < imgcounter; i++)
- {
- computeIntegralImage(currentfeats[i],integralImgs[i]);
- }
-
- depth++;
- #ifdef DEBUG
- cout << "depth: " << depth << endl;
- #endif
- }
-
- }
-
-
- #ifdef DEBUG
- for(int tree = 0; tree < nbTrees; tree++)
- {
- int t = (int) forest[tree].size();
- for(int i = 0; i < t; i++)
- {
- printf("tree[%i]: left: %i, right: %i", i, forest[tree][i].left, forest[tree][i].right);
- if(!forest[tree][i].isleaf && forest[tree][i].left != -1)
- cout << ", feat: " << forest[tree][i].feat->writeInfos() << " ";
- for(int d = 0; d < (int)forest[tree][i].dist.size(); d++)
- {
- cout << " " << forest[tree][i].dist[d];
- }
- cout << endl;
- }
- }
- #endif
- }
- void SemSegContextTree::semanticseg ( CachedExample *ce, NICE::Image & segresult,NICE::MultiChannelImageT<double> & probabilities )
- {
- int xsize;
- int ysize;
- ce->getImageSize ( xsize, ysize );
-
- int numClasses = classNames->numClasses();
-
- fprintf (stderr, "ContextTree classification !\n");
- probabilities.reInit ( xsize, ysize, numClasses, true );
- probabilities.setAll ( 0 );
- NICE::ColorImage img;
- std::string currentFile = Globals::getCurrentImgFN();
-
- try {
- img = ColorImage(currentFile);
- } catch (Exception) {
- cerr << "SemSeg: error opening image file <" << currentFile << ">" << endl;
- return;
- }
-
- //TODO: resize image?!
-
- MultiChannelImageT<double> feats;
- #ifdef LOCALFEATS
- lfcw->getFeats(img, feats);
- #else
- feats.reInit (xsize, ysize, 3, true);
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- for(int r = 0; r < 3; r++)
- {
- feats.set(x,y,img.getPixel(x,y,r),r);
- }
- }
- }
- #endif
-
- bool allleaf = false;
-
- MultiChannelImageT<double> integralImg;
-
- MultiChannelImageT<int> currentfeats(xsize, ysize, nbTrees);
- int depth = 0;
- while(!allleaf)
- {
- allleaf = true;
- //TODO vielleicht parallel wenn nächste schleife auch noch parallelsiert würde, die hat mehr gewicht
- //#pragma omp parallel for
- MultiChannelImageT<int> lastfeats = currentfeats;
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- int t = currentfeats.get(x,y,tree);
- if(tree[t].left > 0)
- {
- allleaf = false;
- double val = tree[t].feat->getVal(feats,lastfeats,tree, forest[tree], integralImg,x,y);
-
- if(val < tree[t].decision)
- {
- currentfeats.set(x, y, tree[t].left, tree);
- }
- else
- {
- currentfeats.set(x, y, tree[t].right, tree);
- }
- }
- }
- }
-
- //compute integral image
- int channels = (int)labelmap.size();
-
- if(integralImg.width() == 0)
- {
- int xsize = feats.width();
- int ysize = feats.height();
-
- integralImg.reInit(xsize, ysize, channels);
- }
-
- computeIntegralImage(currentfeats,integralImg);
-
- depth++;
- }
-
- if(pixelWiseLabeling)
- {
- //finales labeln:
- long int offset = 0;
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++,offset++)
- {
- int t = currentfeats.get(x,y,tree);
- double maxvalue = - numeric_limits<double>::max(); //TODO: das muss nur pro knoten gemacht werden, nicht pro pixel
- int maxindex = 0;
- for(uint i = 0; i < tree[i].dist.size(); i++)
- {
- probabilities.data[labelmapback[i]][offset] = tree[t].dist[i];
- if(tree[t].dist[i] > maxvalue)
- {
- maxvalue = tree[t].dist[i];
- maxindex = labelmapback[i];
- }
- segresult.setPixel(x,y,maxindex);
- }
- }
- }
- }
- else
- {
- //final labeling using segmentation
- //TODO: segmentation
- Matrix regions;
- int regionNumber = segmentation->segRegions(img,regions);
- cout << "regions: " << regionNumber << endl;
- int dSize = (int)labelmap.size();
- vector<vector<double> > regionProbs(regionNumber, vector<double>(dSize,0.0));
- vector<int> bestlabels(regionNumber, 0);
-
- for(int y = 0; y < img.height(); y++)
- {
- for(int x = 0; x < img.width(); x++)
- {
- int cnode = currentfeats.get(x, y, tree);
- int cregion = regions(x,y);
- for(int d = 0; d < dSize; d++)
- {
- regionProbs[cregion][d]+=tree[cnode].dist[d];
- }
- }
- }
-
- for(int r = 0; r < regionNumber; r++)
- {
- double maxval = regionProbs[r][0];
- for(int d = 1; d < dSize; d++)
- {
- if(maxval < regionProbs[r][d])
- {
- maxval = regionProbs[r][d];
- bestlabels[r] = d;
- }
- }
- bestlabels[r] = labelmapback[bestlabels[r]];
- }
-
- for(int y = 0; y < img.height(); y++)
- {
- for(int x = 0; x < img.width(); x++)
- {
- segresult.setPixel(x,y,bestlabels[regions(x,y)]);
- }
- }
- }
- }
|