12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958 |
- #include "SemSegContextTree.h"
- #include "vislearning/baselib/Globals.h"
- #include "vislearning/baselib/ProgressBar.h"
- #include "core/basics/StringTools.h"
- #include "vislearning/cbaselib/CachedExample.h"
- #include "vislearning/cbaselib/PascalResults.h"
- #include "vislearning/baselib/ColorSpace.h"
- #include "segmentation/RSMeanShift.h"
- #include "segmentation/RSGraphBased.h"
- #include "core/basics/numerictools.h"
- #include "core/basics/StringTools.h"
- #include "core/basics/FileName.h"
- #include "vislearning/baselib/ICETools.h"
- #include "core/basics/Timer.h"
- #include "core/basics/vectorio.h"
- #include "core/image/FilterT.h"
- #include <omp.h>
- #include <iostream>
- #define DEBUG
- using namespace OBJREC;
- using namespace std;
- using namespace NICE;
- SemSegContextTree::SemSegContextTree (const Config *conf, const MultiDataset *md)
- : SemanticSegmentation (conf, & (md->getClassNames ("train")))
- {
- this->conf = conf;
- string section = "SSContextTree";
- lfcw = new LFColorWeijer (conf);
- firstiteration = true;
- maxSamples = conf->gI (section, "max_samples", 2000);
- minFeats = conf->gI (section, "min_feats", 50);
- maxDepth = conf->gI (section, "max_depth", 10);
- windowSize = conf->gI (section, "window_size", 16);
- featsPerSplit = conf->gI (section, "feats_per_split", 200);
- useShannonEntropy = conf->gB (section, "use_shannon_entropy", true);
- nbTrees = conf->gI (section, "amount_trees", 1);
- string segmentationtype = conf->gS (section, "segmentation_type", "meanshift");
-
- useCategorization = conf->gB (section, "use_categorization", false);
-
- cndir = conf->gS ("SSContextTree", "cndir", "");
-
- if(useCategorization && cndir == "")
- {
- fasthik = new GPHIKClassifierNICE(conf);
- }
- else
- {
- fasthik = NULL;
- }
- randomTests = conf->gI (section, "random_tests", 10);
- bool saveLoadData = conf->gB ("debug", "save_load_data", false);
- string fileLocation = conf->gS ("debug", "datafile", "tmp.txt");
- pixelWiseLabeling = false;
- useRegionFeature = conf->gB (section, "use_region_feat", false);
- if (segmentationtype == "meanshift")
- segmentation = new RSMeanShift (conf);
- else if (segmentationtype == "none")
- {
- segmentation = NULL;
- pixelWiseLabeling = true;
- useRegionFeature = false;
- }
- else if (segmentationtype == "felzenszwalb")
- segmentation = new RSGraphBased (conf);
- else
- throw ("no valid segmenation_type\n please choose between none, meanshift and felzenszwalb\n");
- ftypes = conf->gI (section, "features", 100);;
- string featsec = "Features";
- vector<Operation*> tops;
- if (conf->gB (featsec, "minus", true))
- tops.push_back (new Minus());
- if (conf->gB (featsec, "minus_abs", true))
- tops.push_back (new MinusAbs());
- if (conf->gB (featsec, "addition", true))
- tops.push_back (new Addition());
- if (conf->gB (featsec, "only1", true))
- tops.push_back (new Only1());
- if (conf->gB (featsec, "rel_x", true))
- tops.push_back (new RelativeXPosition());
- if (conf->gB (featsec, "rel_y", true))
- tops.push_back (new RelativeYPosition());
- ops.push_back (tops);
- tops.clear();
- tops.push_back (new RegionFeat());
- ops.push_back (tops);
- tops.clear();
- if (conf->gB (featsec, "int", true))
- tops.push_back (new IntegralOps());
- if (conf->gB (featsec, "bi_int_cent", true))
- tops.push_back (new BiIntegralCenteredOps());
- if (conf->gB (featsec, "int_cent", true))
- tops.push_back (new IntegralCenteredOps());
- if (conf->gB (featsec, "haar_horz", true))
- tops.push_back (new HaarHorizontal());
- if (conf->gB (featsec, "haar_vert", true))
- tops.push_back (new HaarVertical());
- if (conf->gB (featsec, "haar_diag", true))
- tops.push_back (new HaarDiag());
- if (conf->gB (featsec, "haar3_horz", true))
- tops.push_back (new Haar3Horiz());
- if (conf->gB (featsec, "haar3_vert", true))
- tops.push_back (new Haar3Vert());
- ops.push_back (tops);
- ops.push_back (tops);
- tops.clear();
- if (conf->gB (featsec, "minus", true))
- tops.push_back (new Minus());
- if (conf->gB (featsec, "minus_abs", true))
- tops.push_back (new MinusAbs());
- if (conf->gB (featsec, "addition", true))
- tops.push_back (new Addition());
- if (conf->gB (featsec, "only1", true))
- tops.push_back (new Only1());
- if (conf->gB (featsec, "rel_x", true))
- tops.push_back (new RelativeXPosition());
- if (conf->gB (featsec, "rel_y", true))
- tops.push_back (new RelativeYPosition());
- ops.push_back (tops);
- useGradient = conf->gB (featsec, "use_gradient", true);
- useWeijer = conf->gB (featsec, "use_weijer", true);
- // geometric features of hoiem
- useHoiemFeatures = conf->gB (featsec, "use_hoiem_features", false);
- if (useHoiemFeatures)
- {
- hoiemDirectory = conf->gS (featsec, "hoiem_directory");
- }
- opOverview = vector<int> (NBOPERATIONS, 0);
- contextOverview = vector<vector<double> > (maxDepth, vector<double> (2, 0.0));
- calcVal.push_back (new MCImageAccess());
- calcVal.push_back (new MCImageAccess());
- calcVal.push_back (new MCImageAccess());
- calcVal.push_back (new MCImageAccess());
- calcVal.push_back (new ClassificationResultAccess());
- classnames = md->getClassNames ("train");
- ///////////////////////////////////
- // Train Segmentation Context Trees
- ///////////////////////////////////
- if (saveLoadData)
- {
- if (FileMgt::fileExists (fileLocation))
- read (fileLocation);
- else
- {
- train (md);
- write (fileLocation);
- }
- }
- else
- {
- train (md);
- }
- }
- SemSegContextTree::~SemSegContextTree()
- {
- }
- double SemSegContextTree::getBestSplit (std::vector<NICE::MultiChannelImageT<double> > &feats, std::vector<NICE::MultiChannelImageT<unsigned short int> > ¤tfeats, const std::vector<NICE::MatrixT<int> > &labels, int node, Operation *&splitop, double &splitval, const int &tree, vector<vector<vector<double> > > ®ionProbs)
- {
- Timer t;
- t.start();
- int imgCount = 0;
- try
- {
- imgCount = (int)feats.size();
- }
- catch (Exception)
- {
- cerr << "no features computed?" << endl;
- }
- double bestig = -numeric_limits< double >::max();
- splitop = NULL;
- splitval = -1.0;
- set<vector<int> >selFeats;
- map<int, int> e;
- int featcounter = forest[tree][node].featcounter;
- if (featcounter < minFeats)
- {
- return 0.0;
- }
- vector<double> fraction (a.size(), 0.0);
- for (uint i = 0; i < fraction.size(); i++)
- {
- if (forbidden_classes.find (labelmapback[i]) != forbidden_classes.end())
- fraction[i] = 0;
- else
- fraction[i] = ((double)maxSamples) / ((double)featcounter * a[i] * a.size());
- }
- featcounter = 0;
- for (int iCounter = 0; iCounter < imgCount; iCounter++)
- {
- int xsize = (int)currentfeats[iCounter].width();
- int ysize = (int)currentfeats[iCounter].height();
- for (int x = 0; x < xsize; x++)
- {
- for (int y = 0; y < ysize; y++)
- {
- if (currentfeats[iCounter].get (x, y, tree) == node)
- {
- int cn = labels[iCounter] (x, y);
- double randD = (double)rand() / (double)RAND_MAX;
- if (labelmap.find (cn) == labelmap.end())
- continue;
- if (randD < fraction[labelmap[cn]])
- {
- vector<int> tmp (3, 0);
- tmp[0] = iCounter;
- tmp[1] = x;
- tmp[2] = y;
- featcounter++;
- selFeats.insert (tmp);
- e[cn]++;
- }
- }
- }
- }
- }
- map<int, int>::iterator mapit;
- double globent = 0.0;
- for (mapit = e.begin() ; mapit != e.end(); mapit++)
- {
- double p = (double)(*mapit).second / (double)featcounter;
- globent += p * log2 (p);
- }
- globent = -globent;
- if (globent < 0.5)
- {
- return 0.0;
- }
- /** vector of all possible features */
- std::vector<Operation*> featsel;
- for (int i = 0; i < featsPerSplit; i++)
- {
- int x1, x2, y1, y2;
- int ft = (int)((double)rand() / (double)RAND_MAX * (double)ftypes);
- int tmpws = windowSize;
- if (firstiteration)
- ft = 0;
- if (channelsPerType[ft].size() == 0)
- {
- ft = 0;
- }
- if (ft > 1)
- {
- //use larger window size for context features
- tmpws *= 4;
- }
-
-
- if(ft == 1)
- {
- if(depth < 8)
- {
- ft = 0;
- }
- }
- x1 = (int)((double)rand() / (double)RAND_MAX * (double)tmpws) - tmpws / 2;
- x2 = (int)((double)rand() / (double)RAND_MAX * (double)tmpws) - tmpws / 2;
- y1 = (int)((double)rand() / (double)RAND_MAX * (double)tmpws) - tmpws / 2;
- y2 = (int)((double)rand() / (double)RAND_MAX * (double)tmpws) - tmpws / 2;
- int f1 = (int)((double)rand() / (double)RAND_MAX * (double)channelsPerType[ft].size());
- int f2 = f1;
- if ((double)rand() / (double)RAND_MAX > 0.5)
- f2 = (int)((double)rand() / (double)RAND_MAX * (double)channelsPerType[ft].size());
- int o = (int)((double)rand() / (double)RAND_MAX * (double)ops[ft].size());
- f1 = channelsPerType[ft][f1];
- f2 = channelsPerType[ft][f2];
- if(ft == 1)
- {
- int classes = (int)regionProbs[0][0].size();
- f2 = (int)((double)rand() / (double)RAND_MAX * (double)classes);
- }
-
- Operation *op = ops[ft][o]->clone();
- op->set(x1, y1, x2, y2, f1, f2, calcVal[ft]);
- op->setFeatType(ft);
- if (ft == 3 || ft == 4)
- op->setContext(true);
- else
- op->setContext(false);
- featsel.push_back (op);
- }
- for (int f = 0; f < featsPerSplit; f++)
- {
- double l_bestig = -numeric_limits< double >::max();
- double l_splitval = -1.0;
- set<vector<int> >::iterator it;
- vector<double> vals;
- double maxval = -numeric_limits<double>::max();
- double minval = numeric_limits<double>::max();
- for (it = selFeats.begin() ; it != selFeats.end(); it++)
- {
- Features feat;
- feat.feats = &feats[ (*it) [0]];
- feat.cfeats = ¤tfeats[ (*it) [0]];
- feat.cTree = tree;
- feat.tree = &forest[tree];
-
- assert(forest.size() > tree);
- assert(forest[tree][0].dist.size() > 0);
-
- feat.rProbs = ®ionProbs[(*it) [0]];
-
- double val = featsel[f]->getVal (feat, (*it) [1], (*it) [2]);
- if(!isfinite(val))
- {
- val = 0.0;
- //cerr << "non finite value for " << featsel[f]->writeInfos() << endl << (*it) [1] << " " << (*it) [2] << endl;
- }
- vals.push_back (val);
- maxval = std::max (val, maxval);
- minval = std::min (val, minval);
- }
- if (minval == maxval)
- continue;
- double scale = maxval - minval;
- vector<double> splits;
- for (int r = 0; r < randomTests; r++)
- {
- splits.push_back (((double)rand() / (double)RAND_MAX*scale) + minval);
- }
- for (int run = 0 ; run < randomTests; run++)
- {
- set<vector<int> >::iterator it2;
- double val = splits[run];
- map<int, int> eL, eR;
- int counterL = 0, counterR = 0;
- int counter2 = 0;
- for (it2 = selFeats.begin() ; it2 != selFeats.end(); it2++, counter2++)
- {
- int cn = labels[ (*it2) [0]] ((*it2) [1], (*it2) [2]);
- //cout << "vals[counter2] " << vals[counter2] << " val: " << val << endl;
- if (vals[counter2] < val)
- {
- //left entropie:
- eL[cn] = eL[cn] + 1;
- counterL++;
- }
- else
- {
- //right entropie:
- eR[cn] = eR[cn] + 1;
- counterR++;
- }
- }
- double leftent = 0.0;
- for (mapit = eL.begin() ; mapit != eL.end(); mapit++)
- {
- double p = (double)(*mapit).second / (double)counterL;
- leftent -= p * log2 (p);
- }
- double rightent = 0.0;
- for (mapit = eR.begin() ; mapit != eR.end(); mapit++)
- {
- double p = (double)(*mapit).second / (double)counterR;
- rightent -= p * log2 (p);
- }
- //cout << "rightent: " << rightent << " leftent: " << leftent << endl;
- double pl = (double)counterL / (double)(counterL + counterR);
- double ig = globent - (1.0 - pl) * rightent - pl * leftent;
- //double ig = globent - rightent - leftent;
- if (useShannonEntropy)
- {
- double esplit = - (pl * log (pl) + (1 - pl) * log (1 - pl));
- ig = 2 * ig / (globent + esplit);
- }
- if (ig > l_bestig)
- {
- l_bestig = ig;
- l_splitval = val;
- }
- }
- if (l_bestig > bestig)
- {
- bestig = l_bestig;
- splitop = featsel[f];
- splitval = l_splitval;
- }
- }
- //FIXME: delete all features!
- /*for(int i = 0; i < featsPerSplit; i++)
- {
- if(featsel[i] != splitop)
- delete featsel[i];
- }*/
- #ifdef DEBUG
- //cout << "globent: " << globent << " bestig " << bestig << " splitval: " << splitval << endl;
- #endif
- return bestig;
- }
- inline double SemSegContextTree::getMeanProb (const int &x, const int &y, const int &channel, const MultiChannelImageT<unsigned short int> ¤tfeats)
- {
- double val = 0.0;
- for (int tree = 0; tree < nbTrees; tree++)
- {
- val += forest[tree][currentfeats.get (x,y,tree) ].dist[channel];
- }
- return val / (double)nbTrees;
- }
- void SemSegContextTree::computeIntegralImage (const NICE::MultiChannelImageT<unsigned short int> ¤tfeats, NICE::MultiChannelImageT<double> &feats, int firstChannel)
- {
- int xsize = currentfeats.width();
- int ysize = currentfeats.height();
- xsize = feats.width();
- ysize = feats.height();
- if (firstiteration)
- {
- #pragma omp parallel for
- for (int it = 0; it < (int)integralMap.size(); it++)
- {
- int corg = integralMap[it].first;
- int cint = integralMap[it].second;
- for (int y = 0; y < ysize; y++)
- {
- for (int x = 0; x < xsize; x++)
- {
- feats(x, y, cint) = feats(x, y, corg);
- }
- }
- feats.calcIntegral(cint);
- }
- }
- int channels = (int)forest[0][0].dist.size();
- #pragma omp parallel for
- for (int c = 0; c < channels; c++)
- {
- feats (0, 0, firstChannel + c) = getMeanProb (0, 0, c, currentfeats);
- //first column
- for (int y = 1; y < ysize; y++)
- {
- feats (0, y, firstChannel + c) = getMeanProb (0, y, c, currentfeats)
- + feats (0, y - 1, firstChannel + c);
- }
- //first row
- for (int x = 1; x < xsize; x++)
- {
- feats (x, 0, firstChannel + c) = getMeanProb (x, 0, c, currentfeats)
- + feats (x - 1, 0, firstChannel + c);
- }
- //rest
- for (int y = 1; y < ysize; y++)
- {
- for (int x = 1; x < xsize; x++)
- {
- feats (x, y, firstChannel + c) = getMeanProb (x, y, c, currentfeats)
- + feats (x, y - 1, firstChannel + c)
- + feats (x - 1, y, firstChannel + c)
- - feats (x - 1, y - 1, firstChannel + c);
- }
- }
- }
- }
- inline double computeWeight (const double &d, const double &dim)
- {
- return 1.0 / (pow (2, (double)(dim - d + 1)));
- }
- void SemSegContextTree::train (const MultiDataset *md)
- {
- int shortsize = numeric_limits<short>::max();
-
- Timer timer;
- timer.start();
- const LabeledSet train = * (*md) ["train"];
- const LabeledSet *trainp = &train;
- ProgressBar pb ("compute feats");
- pb.show();
- //TODO: Speichefresser!, lohnt sich sparse?
- vector<MultiChannelImageT<double> > allfeats;
- vector<MultiChannelImageT<unsigned short int> > currentfeats;
- vector<MatrixT<int> > labels;
- vector<SparseVector*> globalCategorFeats;
- vector<map<int,int> > classesPerImage;
- std::string forbidden_classes_s = conf->gS ("analysis", "donttrain", "");
- vector<vector<vector<double> > > regionProbs;
- vector<vector<int> > rSize;
- vector<int> amountRegionpI;
- if (forbidden_classes_s == "")
- {
- forbidden_classes_s = conf->gS ("analysis", "forbidden_classes", "");
- }
- classnames.getSelection (forbidden_classes_s, forbidden_classes);
- int imgcounter = 0;
- int amountPixels = 0;
- ////////////////////////////////////////////////////
- //define which featurextraction methods should be used for each channel
- rawChannels = 3;
- // how many channels without integral image
- int shift = 0;
- if (useGradient)
- rawChannels *= 2;
- if (useWeijer)
- rawChannels += 11;
- if (useHoiemFeatures)
- rawChannels += 8;
- // gray value images
- for (int i = 0; i < rawChannels; i++)
- {
- channelType.push_back (0);
- }
- // regions
- if (useRegionFeature)
- {
- channelType.push_back (1);
- shift++;
- }
- ///////////////////////////////////////////////////////////////////
- LOOP_ALL_S (*trainp)
- {
- EACH_INFO (classno, info);
- NICE::ColorImage img;
- std::string currentFile = info.img();
- CachedExample *ce = new CachedExample (currentFile);
- const LocalizationResult *locResult = info.localization();
- if (locResult->size() <= 0)
- {
- fprintf (stderr, "WARNING: NO ground truth polygons found for %s !\n",
- currentFile.c_str());
- continue;
- }
- fprintf (stderr, "SSContext: Collecting pixel examples from localization info: %s\n", currentFile.c_str());
- int xsize, ysize;
- ce->getImageSize (xsize, ysize);
- amountPixels += xsize * ysize;
- MatrixT<int> tmpMat (xsize, ysize);
- currentfeats.push_back (MultiChannelImageT<unsigned short int> (xsize, ysize, nbTrees));
- currentfeats[imgcounter].setAll (0);
- labels.push_back (tmpMat);
- try {
- img = ColorImage (currentFile);
- } catch (Exception) {
- cerr << "SemSeg: error opening image file <" << currentFile << ">" << endl;
- continue;
- }
- Globals::setCurrentImgFN (currentFile);
- //TODO: resize image?!
- MultiChannelImageT<double> feats;
- allfeats.push_back (feats);
- int amountRegions;
- // read image and do some simple transformations
- extractBasicFeatures (allfeats[imgcounter], img, currentFile, amountRegions);
- if (useRegionFeature)
- {
- amountRegionpI.push_back(amountRegions);
- rSize.push_back(vector<int>(amountRegions, 0));
- for (int y = 0; y < ysize; y++)
- {
- for (int x = 0; x < xsize; x++)
- {
- rSize[imgcounter][allfeats[imgcounter](x, y, rawChannels)]++;
- }
- }
- }
- // getting groundtruth
- NICE::Image pixelLabels (xsize, ysize);
- pixelLabels.set (0);
- locResult->calcLabeledImage (pixelLabels, (*classNames).getBackgroundClass());
- for (int x = 0; x < xsize; x++)
- {
- for (int y = 0; y < ysize; y++)
- {
- classno = pixelLabels.getPixel (x, y);
- labels[imgcounter] (x, y) = classno;
- if (forbidden_classes.find (classno) != forbidden_classes.end())
- continue;
- labelcounter[classno]++;
- }
- }
-
- if(useCategorization)
- {
- globalCategorFeats.push_back(new SparseVector());
- classesPerImage.push_back(map<int,int>());
-
- for (int x = 0; x < xsize; x++)
- {
- for (int y = 0; y < ysize; y++)
- {
- classno = pixelLabels.getPixel (x, y);
- if (forbidden_classes.find (classno) != forbidden_classes.end())
- continue;
- classesPerImage[imgcounter][classno] = 1;
- }
- }
- }
- imgcounter++;
- pb.update (trainp->count());
- delete ce;
- }
- pb.hide();
- map<int, int>::iterator mapit;
- int classes = 0;
- for (mapit = labelcounter.begin(); mapit != labelcounter.end(); mapit++)
- {
- labelmap[mapit->first] = classes;
- labelmapback[classes] = mapit->first;
- classes++;
- }
- ///////////////////////////////////////////////////////////////////
- for (int i = 0; i < rawChannels; i++)
- {
- channelType.push_back (2);
- }
- // integral images
- for (int i = 0; i < classes; i++)
- {
- channelType.push_back (3);
- }
- integralMap.clear();
- int integralImageAmount = rawChannels;
- for (int ii = 0; ii < integralImageAmount; ii++)
- {
- integralMap.push_back (pair<int, int> (ii, ii + integralImageAmount + shift));
- }
- int amountTypes = 5;
- channelsPerType = vector<vector<int> > (amountTypes, vector<int>());
- for (int i = 0; i < (int)channelType.size(); i++)
- {
- channelsPerType[channelType[i]].push_back (i);
- }
- for (int i = 0; i < classes; i++)
- {
- channelsPerType[channelsPerType.size()-1].push_back (i);
- }
- ftypes = std::min (amountTypes, ftypes);
- ////////////////////////////////////////////////////
- if (useRegionFeature)
- {
- for (int a = 0; a < (int)amountRegionpI.size(); a++)
- {
- regionProbs.push_back(vector<vector<double> > (amountRegionpI[a], vector<double> (classes, 0.0)));
- }
- }
- //balancing
- int featcounter = 0;
- a = vector<double> (classes, 0.0);
- for (int iCounter = 0; iCounter < imgcounter; iCounter++)
- {
- int xsize = (int)currentfeats[iCounter].width();
- int ysize = (int)currentfeats[iCounter].height();
- for (int x = 0; x < xsize; x++)
- {
- for (int y = 0; y < ysize; y++)
- {
- featcounter++;
- int cn = labels[iCounter] (x, y);
- if (labelmap.find (cn) == labelmap.end())
- continue;
- a[labelmap[cn]] ++;
- }
- }
- }
- for (int i = 0; i < (int)a.size(); i++)
- {
- a[i] /= (double)featcounter;
- }
- #ifdef DEBUG
- for (int i = 0; i < (int)a.size(); i++)
- {
- cout << "a[" << i << "]: " << a[i] << endl;
- }
- cout << "a.size: " << a.size() << endl;
- #endif
- depth = 0;
- uniquenumber = 0;
- for (int t = 0; t < nbTrees; t++)
- {
- vector<TreeNode> singletree;
- singletree.push_back (TreeNode());
- singletree[0].dist = vector<double> (classes, 0.0);
- singletree[0].depth = depth;
- singletree[0].featcounter = amountPixels;
- singletree[0].nodeNumber = uniquenumber;
- uniquenumber++;
- forest.push_back (singletree);
- }
- vector<int> startnode (nbTrees, 0);
- bool allleaf = false;
- //int baseFeatSize = allfeats[0].size();
- timer.stop();
- cerr << "preprocessing finished in: " << timer.getLastAbsolute() << " seconds" << endl;
- timer.start();
- while (!allleaf && depth < maxDepth)
- {
- depth++;
- #ifdef DEBUG
- cout << "depth: " << depth << endl;
- #endif
- allleaf = true;
- vector<MultiChannelImageT<unsigned short int> > lastfeats = currentfeats;
- vector<vector<vector<double> > > lastRegionProbs = regionProbs;
- if (useRegionFeature)
- {
- int rSize = (int)regionProbs.size();
- for (int a = 0; a < rSize; a++)
- {
- int rSize2 = (int)regionProbs[a].size();
- for (int b = 0; b < rSize2; b++)
- {
- int rSize3 = (int)regionProbs[a][b].size();
- for (int c = 0; c < rSize3; c++)
- {
- regionProbs[a][b][c] = 0.0;
- }
- }
- }
- }
- #if 1
- Timer timerDepth;
- timerDepth.start();
- #endif
- double weight = computeWeight (depth, maxDepth) - computeWeight (depth - 1, maxDepth);
- if (depth == 1)
- {
- weight = computeWeight (1, maxDepth);
- }
- // omp_set_dynamic(0);
- //#pragma omp parallel for
- for (int tree = 0; tree < nbTrees; tree++)
- {
- const int t = (int)forest[tree].size();
- const int s = startnode[tree];
- startnode[tree] = t;
- #pragma omp parallel for
- for (int i = s; i < t; i++)
- {
- if (!forest[tree][i].isleaf && forest[tree][i].left < 0)
- {
- Operation *splitfeat = NULL;
- double splitval;
- double bestig = getBestSplit (allfeats, lastfeats, labels, i, splitfeat, splitval, tree, lastRegionProbs);
- for (int ii = 0; ii < (int)lastfeats.size(); ii++)
- {
- for (int c = 0; c < lastfeats[ii].channels(); c++)
- {
- short unsigned int minv, maxv;
- lastfeats[ii].statistics (minv, maxv, c);
- }
- }
- forest[tree][i].feat = splitfeat;
-
- forest[tree][i].decision = splitval;
- if (splitfeat != NULL)
- {
- allleaf = false;
- int left;
- #pragma omp critical
- {
- left = forest[tree].size();
- forest[tree].push_back (TreeNode());
- forest[tree].push_back (TreeNode());
- }
- int right = left + 1;
- forest[tree][i].left = left;
- forest[tree][i].right = right;
- forest[tree][left].dist = vector<double> (classes, 0.0);
- forest[tree][right].dist = vector<double> (classes, 0.0);
- forest[tree][left].depth = depth;
- forest[tree][right].depth = depth;
- forest[tree][left].featcounter = 0;
- forest[tree][right].featcounter = 0;
- forest[tree][left].nodeNumber = uniquenumber;
- int leftu = uniquenumber;
- uniquenumber++;
- forest[tree][right].nodeNumber = uniquenumber;
- int rightu = uniquenumber;
- uniquenumber++;
- forest[tree][right].featcounter = 0;
- #pragma omp parallel for
- for (int iCounter = 0; iCounter < imgcounter; iCounter++)
- {
- int xsize = currentfeats[iCounter].width();
- int ysize = currentfeats[iCounter].height();
- for (int x = 0; x < xsize; x++)
- {
- for (int y = 0; y < ysize; y++)
- {
- if (currentfeats[iCounter].get (x, y, tree) == i)
- {
- Features feat;
- feat.feats = &allfeats[iCounter];
- feat.cfeats = &lastfeats[iCounter];
- feat.cTree = tree;
- feat.tree = &forest[tree];
- feat.rProbs = &lastRegionProbs[iCounter];
- double val = splitfeat->getVal (feat, x, y);
- if(!isfinite(val))
- {
- val = 0.0;
- }
- #pragma omp critical
- if (val < splitval)
- {
- currentfeats[iCounter].set (x, y, left, tree);
- if (labelmap.find (labels[iCounter] (x, y)) != labelmap.end())
- forest[tree][left].dist[labelmap[labels[iCounter] (x, y) ]]++;
- forest[tree][left].featcounter++;
- if(useCategorization && leftu < shortsize)
- (*globalCategorFeats[iCounter])[leftu]+=weight;
- }
- else
- {
- currentfeats[iCounter].set (x, y, right, tree);
- if (labelmap.find (labels[iCounter] (x, y)) != labelmap.end())
- forest[tree][right].dist[labelmap[labels[iCounter] (x, y) ]]++;
- forest[tree][right].featcounter++;
-
- if(useCategorization && rightu < shortsize)
- (*globalCategorFeats[iCounter])[rightu]+=weight;
- }
- }
- }
- }
- }
- double lcounter = 0.0, rcounter = 0.0;
- for (uint d = 0; d < forest[tree][left].dist.size(); d++)
- {
- if (forbidden_classes.find (labelmapback[d]) != forbidden_classes.end())
- {
- forest[tree][left].dist[d] = 0;
- forest[tree][right].dist[d] = 0;
- }
- else
- {
- forest[tree][left].dist[d] /= a[d];
- lcounter += forest[tree][left].dist[d];
- forest[tree][right].dist[d] /= a[d];
- rcounter += forest[tree][right].dist[d];
- }
- }
- if (lcounter <= 0 || rcounter <= 0)
- {
- cout << "lcounter : " << lcounter << " rcounter: " << rcounter << endl;
- cout << "splitval: " << splitval << " splittype: " << splitfeat->writeInfos() << endl;
- cout << "bestig: " << bestig << endl;
- for (int iCounter = 0; iCounter < imgcounter; iCounter++)
- {
- int xsize = currentfeats[iCounter].width();
- int ysize = currentfeats[iCounter].height();
- int counter = 0;
- for (int x = 0; x < xsize; x++)
- {
- for (int y = 0; y < ysize; y++)
- {
- if (lastfeats[iCounter].get (x, y, tree) == i)
- {
- if (++counter > 30)
- break;
- Features feat;
- feat.feats = &allfeats[iCounter];
- feat.cfeats = &lastfeats[iCounter];
- feat.cTree = tree;
- feat.tree = &forest[tree];
- feat.rProbs = &lastRegionProbs[iCounter];
- double val = splitfeat->getVal (feat, x, y);
- if(!isfinite(val))
- {
- val = 0.0;
- }
- cout << "splitval: " << splitval << " val: " << val << endl;
- }
- }
- }
- }
- assert (lcounter > 0 && rcounter > 0);
- }
- for (uint d = 0; d < forest[tree][left].dist.size(); d++)
- {
- forest[tree][left].dist[d] /= lcounter;
- forest[tree][right].dist[d] /= rcounter;
- }
- }
- else
- {
- forest[tree][i].isleaf = true;
- }
- }
- }
- }
- if (useRegionFeature)
- {
- for (int iCounter = 0; iCounter < imgcounter; iCounter++)
- {
- int xsize = currentfeats[iCounter].width();
- int ysize = currentfeats[iCounter].height();
- int counter = 0;
- #pragma omp parallel for
- for (int x = 0; x < xsize; x++)
- {
- for (int y = 0; y < ysize; y++)
- {
- for (int tree = 0; tree < nbTrees; tree++)
- {
- int node = currentfeats[iCounter].get(x, y, tree);
- for (uint d = 0; d < forest[tree][node].dist.size(); d++)
- {
- regionProbs[iCounter][(int)(allfeats[iCounter](x, y, rawChannels))][d] += forest[tree][node].dist[d];
- }
- }
- }
- }
- }
- int rSize1 = (int)regionProbs.size();
- for (int a = 0; a < rSize1; a++)
- {
- int rSize2 = (int)regionProbs[a].size();
- for (int b = 0; b < rSize2; b++)
- {
- int rSize3 = (int)regionProbs[a][b].size();
- for (int c = 0; c < rSize3; c++)
- {
- regionProbs[a][b][c] /= (double)(rSize[a][b]);
- }
- }
- }
- }
- //compute integral images
- if (firstiteration)
- {
- for (int i = 0; i < imgcounter; i++)
- {
- allfeats[i].addChannel ((int)(classes + rawChannels));
- }
- }
- for (int i = 0; i < imgcounter; i++)
- {
- computeIntegralImage (currentfeats[i], allfeats[i], channelType.size() - classes);
- }
- if (firstiteration)
- {
- firstiteration = false;
- }
- #if 1
- timerDepth.stop();
- cout << "time for depth " << depth << ": " << timerDepth.getLastAbsolute() << endl;
- #endif
-
- lastfeats.clear();
- lastRegionProbs.clear();
- }
- timer.stop();
- cerr << "learning finished in: " << timer.getLastAbsolute() << " seconds" << endl;
- timer.start();
-
- cout << "uniquenumber " << uniquenumber << endl;
-
- if(useCategorization && fasthik != NULL)
- {
- uniquenumber = std::min(shortsize, uniquenumber);
- for(uint i = 0; i < globalCategorFeats.size(); i++)
- {
- globalCategorFeats[i]->setDim(uniquenumber);
- globalCategorFeats[i]->normalize();
- }
- map<int,Vector> ys;
-
- int cCounter = 0;
- for(map<int,int>::iterator it = labelmap.begin(); it != labelmap.end(); it++, cCounter++)
- {
- ys[cCounter] = Vector(globalCategorFeats.size());
- for(int i = 0; i < imgcounter; i++)
- {
- if(classesPerImage[i].find(it->first) != classesPerImage[i].end())
- {
- ys[cCounter][i] = 1;
- }
- else
- {
- ys[cCounter][i] = -1;
- }
- }
- }
- fasthik->train(globalCategorFeats, ys);
-
- }
-
- #ifdef DEBUG
- for (int tree = 0; tree < nbTrees; tree++)
- {
- int t = (int)forest[tree].size();
- for (int i = 0; i < t; i++)
- {
- printf ("tree[%i]: left: %i, right: %i", i, forest[tree][i].left, forest[tree][i].right);
- if (!forest[tree][i].isleaf && forest[tree][i].left != -1)
- {
- cout << ", feat: " << forest[tree][i].feat->writeInfos() << " ";
- opOverview[forest[tree][i].feat->getOps() ]++;
- contextOverview[forest[tree][i].depth][ (int)forest[tree][i].feat->getContext() ]++;
- }
- for (int d = 0; d < (int)forest[tree][i].dist.size(); d++)
- {
- cout << " " << forest[tree][i].dist[d];
- }
- cout << endl;
- }
- }
- std::map<int, int> featTypeCounter;
- for (int tree = 0; tree < nbTrees; tree++)
- {
- int t = (int)forest[tree].size();
- for (int i = 0; i < t; i++)
- {
- if (!forest[tree][i].isleaf && forest[tree][i].left != -1)
- {
- featTypeCounter[forest[tree][i].feat->getFeatType()] += 1;
- }
- }
- }
- cout << "evaluation of featuretypes" << endl;
- for (map<int, int>::const_iterator it = featTypeCounter.begin(); it != featTypeCounter.end(); it++)
- {
- cerr << it->first << ": " << it->second << endl;
- }
- for (uint c = 0; c < ops.size(); c++)
- {
- for (int t = 0; t < ops[c].size(); t++)
- {
- cout << ops[c][t]->writeInfos() << ": " << opOverview[ops[c][t]->getOps() ] << endl;
- }
- }
- for (int d = 0; d < maxDepth; d++)
- {
- double sum = contextOverview[d][0] + contextOverview[d][1];
- if(sum == 0)
- sum = 1;
- contextOverview[d][0] /= sum;
- contextOverview[d][1] /= sum;
- cout << "depth: " << d << " woContext: " << contextOverview[d][0] << " wContext: " << contextOverview[d][1] << endl;
- }
- #endif
- timer.stop();
- cerr << "rest finished in: " << timer.getLastAbsolute() << " seconds" << endl;
- timer.start();
- }
- void SemSegContextTree::extractBasicFeatures (NICE::MultiChannelImageT<double> &feats, const ColorImage &img, const string ¤tFile, int &amountRegions)
- {
- int xsize = img.width();
- int ysize = img.height();
- //TODO: resize image?!
- feats.reInit (xsize, ysize, 3);
- for (int x = 0; x < xsize; x++)
- {
- for (int y = 0; y < ysize; y++)
- {
- for (int r = 0; r < 3; r++)
- {
- feats.set (x, y, img.getPixel (x, y, r), r);
- }
- }
- }
- feats = ColorSpace::rgbtolab (feats);
- if (useGradient)
- {
- int currentsize = feats.channels();
- feats.addChannel (currentsize);
- for (int c = 0; c < currentsize; c++)
- {
- ImageT<double> tmp = feats[c];
- ImageT<double> tmp2 = feats[c+currentsize];
- NICE::FilterT<double, double, double>::gradientStrength (tmp, tmp2);
- }
- }
- if (useWeijer)
- {
- NICE::MultiChannelImageT<double> cfeats;
- lfcw->getFeats (img, cfeats);
- feats.addChannel (cfeats);
- }
- // read the geometric cues produced by Hoiem et al.
- if (useHoiemFeatures)
- {
- // we could also give the following set as a config option
- string hoiemClasses_s = "sky 000 090-045 090-090 090-135 090 090-por 090-sol";
- vector<string> hoiemClasses;
- StringTools::split (hoiemClasses_s, ' ', hoiemClasses);
- // Now we have to do some fancy regular expressions :)
- // Original image filename: basel_000083.jpg
- // hoiem result: basel_000083_c_sky.png
- // Fancy class of Ferid which supports string handling especially for filenames
- FileName fn (currentFile);
- fn.removeExtension();
- FileName fnBase = fn.extractFileName();
- // counter for the channel index, starts with the current size of the destination multi-channel image
- int currentChannel = feats.channels();
- // add a channel for each feature in advance
- feats.addChannel (hoiemClasses.size());
- // loop through all geometric categories and add the images
- for (vector<string>::const_iterator i = hoiemClasses.begin(); i != hoiemClasses.end(); i++, currentChannel++)
- {
- string hoiemClass = *i;
- FileName fnConfidenceImage (hoiemDirectory + fnBase.str() + "_c_" + hoiemClass + ".png");
- if (! fnConfidenceImage.fileExists())
- {
- fthrow (Exception, "Unable to read the Hoiem geometric confidence image: " << fnConfidenceImage.str() << " (original image is " << currentFile << ")");
- } else {
- Image confidenceImage (fnConfidenceImage.str());
- // check whether the image size is consistent
- if (confidenceImage.width() != feats.width() || confidenceImage.height() != feats.height())
- {
- fthrow (Exception, "The size of the geometric confidence image does not match with the original image size: " << fnConfidenceImage.str());
- }
- ImageT<double> dst = feats[currentChannel];
- // copy standard image to double image
- for (uint y = 0 ; y < (uint) confidenceImage.height(); y++)
- for (uint x = 0 ; x < (uint) confidenceImage.width(); x++)
- feats (x, y, currentChannel) = (double)confidenceImage (x, y);
- }
- }
- }
- if (useRegionFeature)
- {
- //using segmentation
- Matrix regions;
- amountRegions = segmentation->segRegions (img, regions);
- int cchannel = feats.channels();
- feats.addChannel(1);
- for (int y = 0; y < regions.cols(); y++)
- {
- for (int x = 0; x < regions.rows(); x++)
- {
- feats(x, y, cchannel) = regions(x, y);
- }
- }
- }
- else
- {
- amountRegions = -1;
- }
- }
- void SemSegContextTree::semanticseg (CachedExample *ce, NICE::Image & segresult, NICE::MultiChannelImageT<double> & probabilities)
- {
- int xsize;
- int ysize;
- ce->getImageSize (xsize, ysize);
- firstiteration = true;
- int classes = labelmapback.size();
- int numClasses = classNames->numClasses();
- fprintf (stderr, "ContextTree classification !\n");
- probabilities.reInit (xsize, ysize, numClasses);
- probabilities.setAll (0);
- SparseVector *globalCategorFeat = new SparseVector();
- std::string currentFile = Globals::getCurrentImgFN();
- MultiChannelImageT<double> feats;
- NICE::ColorImage img;
- try {
- img = ColorImage (currentFile);
- } catch (Exception) {
- cerr << "SemSeg: error opening image file <" << currentFile << ">" << endl;
- return;
- }
- //TODO add to features!
- int amountRegions;
- extractBasicFeatures (feats, img, currentFile, amountRegions); //read image and do some simple transformations
- vector<int> rSize;
- if (useRegionFeature)
- {
- rSize = vector<int>(amountRegions, 0);
- for (int y = 0; y < ysize; y++)
- {
- for (int x = 0; x < xsize; x++)
- {
- rSize[feats(x, y, rawChannels)]++;
- }
- }
- }
- bool allleaf = false;
- MultiChannelImageT<unsigned short int> currentfeats (xsize, ysize, nbTrees);
- currentfeats.setAll (0);
- depth = 0;
- vector<vector<double> > regionProbs;
- if (useRegionFeature)
- {
- regionProbs = vector<vector<double> > (amountRegions, vector<double> (classes, 0.0));
- }
- for (int d = 0; d < maxDepth && !allleaf; d++)
- {
- depth++;
- vector<vector<double> > lastRegionProbs = regionProbs;
- if (useRegionFeature)
- {
- int rSize2 = (int)regionProbs.size();
- for (int b = 0; b < rSize2; b++)
- {
- int rSize3 = (int)regionProbs[b].size();
- for (int c = 0; c < rSize3; c++)
- {
- regionProbs[b][c] = 0.0;
- }
- }
- }
- double weight = computeWeight (depth, maxDepth) - computeWeight (depth - 1, maxDepth);
- if (depth == 1)
- {
- weight = computeWeight (1, maxDepth);
- }
- allleaf = true;
- MultiChannelImageT<unsigned short int> lastfeats = currentfeats;
- int tree;
- #pragma omp parallel for private(tree)
- for (tree = 0; tree < nbTrees; tree++)
- {
- for (int x = 0; x < xsize; x++)
- {
- for (int y = 0; y < ysize; y++)
- {
- int t = currentfeats.get (x, y, tree);
- if (forest[tree][t].left > 0)
- {
- allleaf = false;
- Features feat;
- feat.feats = &feats;
- feat.cfeats = &lastfeats;
- feat.cTree = tree;
- feat.tree = &forest[tree];
- feat.rProbs = &lastRegionProbs;
- double val = forest[tree][t].feat->getVal (feat, x, y);
- if(!isfinite(val))
- {
- val = 0.0;
- }
- if (val < forest[tree][t].decision)
- {
- currentfeats.set (x, y, forest[tree][t].left, tree);
- #pragma omp critical
- {
- if(fasthik != NULL && useCategorization && forest[tree][forest[tree][t].left].nodeNumber < uniquenumber)
- (*globalCategorFeat)[forest[tree][forest[tree][t].left].nodeNumber] += weight;
- }
- }
- else
- {
- currentfeats.set (x, y, forest[tree][t].right, tree);
- #pragma omp critical
- {
- if(fasthik != NULL && useCategorization && forest[tree][forest[tree][t].right].nodeNumber < uniquenumber)
- (*globalCategorFeat)[forest[tree][forest[tree][t].right].nodeNumber] += weight;
- }
- }
- }
- }
- }
- }
- if (useRegionFeature)
- {
- int xsize = currentfeats.width();
- int ysize = currentfeats.height();
- #pragma omp parallel for
- for (int x = 0; x < xsize; x++)
- {
- for (int y = 0; y < ysize; y++)
- {
- for (int tree = 0; tree < nbTrees; tree++)
- {
- int node = currentfeats.get(x, y, tree);
- for (uint d = 0; d < forest[tree][node].dist.size(); d++)
- {
- regionProbs[(int)(feats(x, y, rawChannels))][d] += forest[tree][node].dist[d];
- }
- }
- }
- }
- int rSize2 = (int)regionProbs.size();
- for (int b = 0; b < rSize2; b++)
- {
- int rSize3 = (int)regionProbs[b].size();
- for (int c = 0; c < rSize3; c++)
- {
- regionProbs[b][c] /= (double)(rSize[b]);
- }
- }
- }
- if (depth < maxDepth)
- {
- //compute integral images
- if (firstiteration)
- {
- feats.addChannel (classes + rawChannels);
- }
- computeIntegralImage (currentfeats, feats, channelType.size() - classes);
- if (firstiteration)
- {
- firstiteration = false;
- }
- }
- }
- int allClasses = (int)probabilities.channels();
- vector<int> useclass (allClasses, 1);
- vector<int> classesInImg;
-
- if(useCategorization)
- {
- if(cndir != "")
- {
-
- std::vector< std::string > list;
- StringTools::split (currentFile, '/', list);
- string orgname = list.back();
-
- ifstream infile ((cndir + "/" + orgname + ".dat").c_str());
- while (!infile.eof() && infile.good())
- {
- int tmp;
- infile >> tmp;
- assert (tmp >= 0 && tmp < allClasses);
- classesInImg.push_back(tmp);
- }
- }
- else
- {
- globalCategorFeat->setDim(uniquenumber);
- globalCategorFeat->normalize();
- ClassificationResult cr = fasthik->classify(globalCategorFeat);
- for (uint i = 0; i < classes; i++)
- {
- cerr << cr.scores[i] << " ";
- if(cr.scores[i] > 0.0/*-0.3*/)
- {
- classesInImg.push_back(i);
- }
- }
- }
- cerr << "amount of classes: " << classes << " used classes: " << classesInImg.size() << endl;
- }
-
- if(classesInImg.size() == 0)
- {
- for (uint i = 0; i < classes; i++)
- {
- classesInImg.push_back(i);
- }
- }
- if (pixelWiseLabeling)
- {
- //finales labeln:
- //long int offset = 0;
- if(segresult.width() == 0)
- {
- segresult.resize(xsize,ysize);
- segresult.set(0);
- }
- for (int x = 0; x < xsize; x++)
- {
- for (int y = 0; y < ysize; y++)
- {
- double maxvalue = - numeric_limits<double>::max(); //TODO: das kann auch nur pro knoten gemacht werden, nicht pro pixel
- int maxindex = 0;
- for (uint c = 0; c < classesInImg.size(); c++)
- {
- int i = classesInImg[c];
- int currentclass = labelmapback[i];
- if (useclass[currentclass])
- {
- probabilities (x, y, currentclass) = getMeanProb (x, y, i, currentfeats);
- if (probabilities (x, y, currentclass) > maxvalue)
- {
- maxvalue = probabilities (x, y, currentclass);
- maxindex = currentclass;
- }
- }
- }
- segresult.setPixel (x, y, maxindex);
- if (maxvalue > 1)
- cout << "maxvalue: " << maxvalue << endl;
- }
- }
- #undef VISUALIZE
- #ifdef VISUALIZE
- for (int j = 0 ; j < (int)probabilities.numChannels; j++)
- {
- //cout << "class: " << j << endl;//" " << cn.text (j) << endl;
- NICE::Matrix tmp (probabilities.height(), probabilities.width());
- double maxval = -numeric_limits<double>::max();
- double minval = numeric_limits<double>::max();
- for (int y = 0; y < probabilities.height(); y++)
- for (int x = 0; x < probabilities.width(); x++)
- {
- double val = probabilities (x, y, j);
- tmp (y, x) = val;
- maxval = std::max (val, maxval);
- minval = std::min (val, minval);
- }
- tmp (0, 0) = 1.0;
- tmp (0, 1) = 0.0;
- NICE::ColorImage imgrgb (probabilities.width(), probabilities.height());
- ICETools::convertToRGB (tmp, imgrgb);
- cout << "maxval = " << maxval << " minval: " << minval << " for class " << j << endl; //cn.text (j) << endl;
- std::string s;
- std::stringstream out;
- out << "tmpprebmap" << j << ".ppm";
- s = out.str();
- imgrgb.write (s);
- //showImage(imgrgb, "Ergebnis");
- //getchar();
- }
- cout << "fertsch" << endl;
- getchar();
- cout << "weiter gehtsch" << endl;
- #endif
- }
- else
- {
- //using segmentation
- Matrix regions;
- if (useRegionFeature)
- {
- int rchannel = -1;
- for (uint i = 0; i < channelType.size(); i++)
- {
- if (channelType[i] == 1)
- {
- rchannel = i;
- break;
- }
- }
- assert(rchannel > -1);
- int xsize = feats.width();
- int ysize = feats.height();
- regions.resize(xsize, ysize);
- for (int y = 0; y < ysize; y++)
- {
- for (int x = 0; x < xsize; x++)
- {
- regions(x, y) = feats(x, y, rchannel);
- }
- }
- }
- else
- {
- amountRegions = segmentation->segRegions (img, regions);
- }
- regionProbs.clear();
- regionProbs = vector<vector<double> >(amountRegions, vector<double> (classes, 0.0));
- vector<int> bestlabels (amountRegions, labelmapback[classesInImg[0]]);
- for (int y = 0; y < img.height(); y++)
- {
- for (int x = 0; x < img.width(); x++)
- {
- int cregion = regions (x, y);
- for (uint c = 0; c < classesInImg.size(); c++)
- {
- int d = classesInImg[c];
- regionProbs[cregion][d] += getMeanProb (x, y, d, currentfeats);
- }
- }
- }
- for (int r = 0; r < amountRegions; r++)
- {
- double maxval = regionProbs[r][classesInImg[0]];
- bestlabels[r] = classesInImg[0];
- for (int d = 1; d < classes; d++)
- {
- if (maxval < regionProbs[r][d])
- {
- maxval = regionProbs[r][d];
- bestlabels[r] = d;
- }
- }
- bestlabels[r] = labelmapback[bestlabels[r]];
- }
- for (int y = 0; y < img.height(); y++)
- {
- for (int x = 0; x < img.width(); x++)
- {
- segresult.setPixel (x, y, bestlabels[regions (x,y) ]);
- }
- }
- #undef WRITEREGIONS
- #ifdef WRITEREGIONS
- RegionGraph rg;
- segmentation->getGraphRepresentation (img, regions, rg);
- for (uint pos = 0; pos < regionProbs.size(); pos++)
- {
- rg[pos]->setProbs (regionProbs[pos]);
- }
- std::string s;
- std::stringstream out;
- std::vector< std::string > list;
- StringTools::split (Globals::getCurrentImgFN (), '/', list);
- out << "rgout/" << list.back() << ".graph";
- string writefile = out.str();
- rg.write (writefile);
- #endif
- }
- cout << "segmentation finished" << endl;
- }
- void SemSegContextTree::store (std::ostream & os, int format) const
- {
- os.precision (numeric_limits<double>::digits10 + 1);
- os << nbTrees << endl;
- classnames.store (os);
- map<int, int>::const_iterator it;
- os << labelmap.size() << endl;
- for (it = labelmap.begin() ; it != labelmap.end(); it++)
- os << (*it).first << " " << (*it).second << endl;
- os << labelmapback.size() << endl;
- for (it = labelmapback.begin() ; it != labelmapback.end(); it++)
- os << (*it).first << " " << (*it).second << endl;
- int trees = forest.size();
- os << trees << endl;
- for (int t = 0; t < trees; t++)
- {
- int nodes = forest[t].size();
- os << nodes << endl;
- for (int n = 0; n < nodes; n++)
- {
- os << forest[t][n].left << " " << forest[t][n].right << " " << forest[t][n].decision << " " << forest[t][n].isleaf << " " << forest[t][n].depth << " " << forest[t][n].featcounter << " " << forest[t][n].nodeNumber << endl;
- os << forest[t][n].dist << endl;
- if (forest[t][n].feat == NULL)
- os << -1 << endl;
- else
- {
- os << forest[t][n].feat->getOps() << endl;
- forest[t][n].feat->store (os);
- }
- }
- }
- os << channelType.size() << endl;
- for (int i = 0; i < (int)channelType.size(); i++)
- {
- os << channelType[i] << " ";
- }
- os << endl;
- os << integralMap.size() << endl;
- for (int i = 0; i < (int)integralMap.size(); i++)
- {
- os << integralMap[i].first << " " << integralMap[i].second << endl;
- }
- os << rawChannels << endl;
-
- os << uniquenumber << endl;
- }
- void SemSegContextTree::restore (std::istream & is, int format)
- {
- is >> nbTrees;
- classnames.restore (is);
- int lsize;
- is >> lsize;
- labelmap.clear();
- for (int l = 0; l < lsize; l++)
- {
- int first, second;
- is >> first;
- is >> second;
- labelmap[first] = second;
- }
- is >> lsize;
- labelmapback.clear();
- for (int l = 0; l < lsize; l++)
- {
- int first, second;
- is >> first;
- is >> second;
- labelmapback[first] = second;
- }
- int trees;
- is >> trees;
- forest.clear();
-
- for (int t = 0; t < trees; t++)
- {
- vector<TreeNode> tmptree;
- forest.push_back (tmptree);
- int nodes;
- is >> nodes;
-
- for (int n = 0; n < nodes; n++)
- {
- TreeNode tmpnode;
- forest[t].push_back (tmpnode);
- is >> forest[t][n].left;
- is >> forest[t][n].right;
- is >> forest[t][n].decision;
- is >> forest[t][n].isleaf;
- is >> forest[t][n].depth;
- is >> forest[t][n].featcounter;
- is >> forest[t][n].nodeNumber;
- is >> forest[t][n].dist;
-
- int feattype;
- is >> feattype;
- assert (feattype < NBOPERATIONS);
- forest[t][n].feat = NULL;
- if (feattype >= 0)
- {
- for (uint o = 0; o < ops.size(); o++)
- {
- for (uint o2 = 0; o2 < ops[o].size(); o2++)
- {
- if (forest[t][n].feat == NULL)
- {
- for (uint c = 0; c < ops[o].size(); c++)
- {
- if (ops[o][o2]->getOps() == feattype)
- {
- forest[t][n].feat = ops[o][o2]->clone();
- break;
- }
- }
- }
- }
- }
- assert (forest[t][n].feat != NULL);
- forest[t][n].feat->restore (is);
-
- }
- }
- }
- channelType.clear();
- int ctsize;
- is >> ctsize;
- for (int i = 0; i < ctsize; i++)
- {
- int tmp;
- is >> tmp;
- channelType.push_back (tmp);
- }
- integralMap.clear();
- int iMapSize;
- is >> iMapSize;
- for (int i = 0; i < iMapSize; i++)
- {
- int first;
- int second;
- is >> first;
- is >> second;
- integralMap.push_back (pair<int, int> (first, second));
- }
- is >> rawChannels;
-
- is >> uniquenumber;
- }
|