testSemanticSegmentation.cpp 6.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293
  1. // Beispielhafter Aufruf: BUILD_x86_64/progs/testSemanticSegmentation -config <CONFIGFILE>
  2. /**
  3. * @file testSemanticSegmentation.cpp
  4. * @brief test semantic segmentation routines
  5. * @author Erik Rodner
  6. * @date 03/20/2008
  7. */
  8. #ifdef NICE_USELIB_OPENMP
  9. #include <omp.h>
  10. #endif
  11. #include <objrec/baselib/Config.h>
  12. #include <objrec/baselib/StringTools.h>
  13. #include <objrec/baselib/ICETools.h>
  14. #include <objrec-froehlichexp/semseg/SemanticSegmentation.h>
  15. #include <objrec-froehlichexp/semseg/SemSegLocal.h>
  16. #include <objrec-froehlichexp/semseg/SemSegSTF.h>
  17. #include <objrec-froehlichexp/semseg/SemSegCsurka.h>
  18. #include <objrec-froehlichexp/semseg/SemSegCsurka2.h>
  19. #include <objrec-froehlichexp/semseg/SemSegRegionBased.h>
  20. #include <objrec-froehlichexp/semseg/SemSegContextTree.h>
  21. #include <fstream>
  22. using namespace OBJREC;
  23. using namespace NICE;
  24. using namespace std;
  25. void updateMatrix(const NICE::Image & img, const NICE::Image & gt,
  26. NICE::Matrix & M, const set<int> & forbidden_classes)
  27. {
  28. double subsamplex = gt.width() / (double)img.width();
  29. double subsampley = gt.height() / (double)img.height();
  30. for (int y = 0 ; y < gt.height() ; y++)
  31. for (int x = 0 ; x < gt.width() ; x++)
  32. {
  33. int xx = (int)(x / subsamplex);
  34. int yy = (int)(y / subsampley);
  35. if (xx < 0) xx = 0;
  36. if (yy < 0) yy = 0;
  37. if (xx > img.width() - 1) xx = img.width() - 1;
  38. if (yy > img.height() - 1) yy = img.height() - 1;
  39. int cimg = img.getPixel(xx, yy);
  40. int gimg = gt.getPixel(x, y);
  41. if (forbidden_classes.find(gimg) == forbidden_classes.end())
  42. {
  43. M(gimg, cimg)++;
  44. }
  45. }
  46. }
  47. /**
  48. test semantic segmentation routines
  49. */
  50. int main(int argc, char **argv)
  51. {
  52. std::set_terminate(__gnu_cxx::__verbose_terminate_handler);
  53. Config conf(argc, argv);
  54. bool show_result = conf.gB("debug", "show_results", false);
  55. bool write_results = conf.gB("debug", "write_results", false);
  56. bool write_results_pascal = conf.gB("debug", "write_results_pascal", false);
  57. std::string resultdir = conf.gS("debug", "resultdir", ".");
  58. if (write_results)
  59. {
  60. cerr << "Writing Results to " << resultdir << endl;
  61. }
  62. MultiDataset md(&conf);
  63. const ClassNames & classNames = md.getClassNames("train");
  64. //SemanticSegmentation *semseg = new SemSegLocal ( &conf, &md );
  65. //SemanticSegmentation *semseg = new SemSegSTF ( &conf, &md );
  66. //SemanticSegmentation *semseg = new SemSegCsurka ( &conf, &md);
  67. SemanticSegmentation *semseg = new SemSegContextTree ( &conf, &md);
  68. //SemanticSegmentation *semseg = new SemSegRegionBased(&conf, &md);
  69. const LabeledSet *testFiles = md["test"];
  70. NICE::Matrix M(classNames.getMaxClassno() + 1, classNames.getMaxClassno() + 1);
  71. M.set(0);
  72. set<int> forbidden_classes;
  73. std::string forbidden_classes_s = conf.gS("analysis", "forbidden_classes", "");
  74. classNames.getSelection(forbidden_classes_s, forbidden_classes);
  75. ProgressBar pb("Semantic Segmentation Analysis");
  76. pb.show();
  77. int fileno = 0;
  78. LOOP_ALL_S(*testFiles)
  79. {
  80. EACH_INFO(classno, info);
  81. pb.update(testFiles->count());
  82. std::string file = info.img();
  83. NICE::Image lm;
  84. GenericImage<double> probabilities;
  85. if (info.hasLocalizationInfo())
  86. {
  87. const LocalizationResult *l_gt = info.localization();
  88. lm.resize(l_gt->xsize, l_gt->ysize);
  89. lm.set(0);
  90. l_gt->calcLabeledImage(lm, classNames.getBackgroundClass());
  91. }
  92. semseg->semanticseg(file, lm, probabilities);
  93. fprintf(stderr, "testSemanticSegmentation: Segmentation finished !\n");
  94. NICE::Image lm_gt;
  95. if (info.hasLocalizationInfo())
  96. {
  97. const LocalizationResult *l_gt = info.localization();
  98. lm_gt.resize(l_gt->xsize, l_gt->ysize);
  99. lm_gt.set(0);
  100. fprintf(stderr, "testSemanticSegmentation: Generating Labeled NICE::Image (Ground-Truth)\n");
  101. l_gt->calcLabeledImage(lm_gt, classNames.getBackgroundClass());
  102. }
  103. std::string fname = StringTools::baseName(file, false);
  104. if (write_results_pascal)
  105. {
  106. NICE::Image pascal_lm(lm.width(), lm.height());
  107. int backgroundClass = classNames.getBackgroundClass();
  108. for (int y = 0 ; y < lm.height(); y++)
  109. for (int x = 0 ; x < lm.width(); x++)
  110. {
  111. int v = lm.getPixel(x, y);
  112. if (v == backgroundClass)
  113. pascal_lm.setPixel(x, y, 255);
  114. else
  115. pascal_lm.setPixel(x, y, 255 - v - 1);
  116. }
  117. char filename[1024];
  118. char *format = (char *)"pgm";
  119. sprintf(filename, "%s/%s.%s", resultdir.c_str(), fname.c_str(), format);
  120. pascal_lm.write(filename);
  121. }
  122. if (show_result || write_results)
  123. {
  124. NICE::ColorImage orig(file);
  125. NICE::ColorImage rgb;
  126. NICE::ColorImage rgb_gt;
  127. classNames.labelToRGB(lm, rgb);
  128. classNames.labelToRGB(lm_gt, rgb_gt);
  129. if (write_results)
  130. {
  131. char filename[1024];
  132. char *format = (char *)"ppm";
  133. sprintf(filename, "%06d.%s", fileno, format);
  134. std::string origfilename = resultdir + "/orig_" + string(filename);
  135. cerr << "Writing to file " << origfilename << endl;
  136. orig.write(origfilename);
  137. rgb.write(resultdir + "/result_" + string(filename));
  138. rgb_gt.write(resultdir + "/groundtruth_" + string(filename));
  139. }
  140. if (show_result)
  141. {
  142. #ifndef NOVISUAL
  143. showImage(rgb, "Result");
  144. showImage(rgb_gt, "Groundtruth");
  145. showImage(orig, "Input");
  146. #endif
  147. }
  148. }
  149. //#pragma omp critical
  150. updateMatrix(lm, lm_gt, M, forbidden_classes);
  151. cerr << M << endl;
  152. fileno++;
  153. }
  154. pb.hide();
  155. double overall = 0.0;
  156. double sumall = 0.0;
  157. for(int r = 0; r < (int)M.rows(); r++)
  158. {
  159. for(int c = 0; c < (int)M.cols(); c++)
  160. {
  161. if(r == c)
  162. overall += M(r,c);
  163. sumall += M(r,c);
  164. }
  165. }
  166. overall /= sumall;
  167. // normalizing M using rows
  168. for (int r = 0 ; r < (int)M.rows() ; r++)
  169. {
  170. double sum = 0.0;
  171. for (int c = 0 ; c < (int)M.cols() ; c++)
  172. sum += M(r, c);
  173. if (fabs(sum) > 1e-4)
  174. for (int c = 0 ; c < (int)M.cols() ; c++)
  175. M(r, c) /= sum;
  176. }
  177. cerr << M << endl;
  178. double avg_perf = 0.0;
  179. int classes_trained = 0;
  180. for (int r = 0 ; r < (int)M.rows() ; r++)
  181. {
  182. if ((classNames.existsClassno(r)) && (forbidden_classes.find(r) == forbidden_classes.end()))
  183. {
  184. avg_perf += M(r, r);
  185. classes_trained++;
  186. }
  187. }
  188. if (write_results)
  189. {
  190. ofstream fout((resultdir + "/res.txt").c_str(), ios::out);
  191. fout << "overall: " << overall << endl;
  192. fout << "Average Performance " << avg_perf / (classes_trained) << endl;
  193. fout << "Lower Bound " << 1.0 / classes_trained << endl;
  194. for (int r = 0 ; r < (int)M.rows() ; r++)
  195. {
  196. if ((classNames.existsClassno(r)) && (forbidden_classes.find(r) == forbidden_classes.end()))
  197. {
  198. std::string classname = classNames.text(r);
  199. fout << classname.c_str() << ": " << M(r, r) << endl;
  200. }
  201. }
  202. fout.close();
  203. }
  204. fprintf(stderr, "overall: %f\n", overall);
  205. fprintf(stderr, "Average Performance %f\n", avg_perf / (classes_trained));
  206. //fprintf(stderr, "Lower Bound %f\n", 1.0 / classes_trained);
  207. for (int r = 0 ; r < (int)M.rows() ; r++)
  208. {
  209. if ((classNames.existsClassno(r)) && (forbidden_classes.find(r) == forbidden_classes.end()))
  210. {
  211. std::string classname = classNames.text(r);
  212. fprintf(stderr, "%s: %f\n", classname.c_str(), M(r, r));
  213. }
  214. }
  215. delete semseg;
  216. return 0;
  217. }