123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293 |
- // Beispielhafter Aufruf: BUILD_x86_64/progs/testSemanticSegmentation -config <CONFIGFILE>
- /**
- * @file testSemanticSegmentation.cpp
- * @brief test semantic segmentation routines
- * @author Erik Rodner
- * @date 03/20/2008
- */
- #ifdef NICE_USELIB_OPENMP
- #include <omp.h>
- #endif
- #include <objrec/baselib/Config.h>
- #include <objrec/baselib/StringTools.h>
- #include <objrec/baselib/ICETools.h>
- #include <objrec-froehlichexp/semseg/SemanticSegmentation.h>
- #include <objrec-froehlichexp/semseg/SemSegLocal.h>
- #include <objrec-froehlichexp/semseg/SemSegSTF.h>
- #include <objrec-froehlichexp/semseg/SemSegCsurka.h>
- #include <objrec-froehlichexp/semseg/SemSegCsurka2.h>
- #include <objrec-froehlichexp/semseg/SemSegRegionBased.h>
- #include <objrec-froehlichexp/semseg/SemSegContextTree.h>
- #include <fstream>
- using namespace OBJREC;
- using namespace NICE;
- using namespace std;
- void updateMatrix(const NICE::Image & img, const NICE::Image & gt,
- NICE::Matrix & M, const set<int> & forbidden_classes)
- {
- double subsamplex = gt.width() / (double)img.width();
- double subsampley = gt.height() / (double)img.height();
- for (int y = 0 ; y < gt.height() ; y++)
- for (int x = 0 ; x < gt.width() ; x++)
- {
- int xx = (int)(x / subsamplex);
- int yy = (int)(y / subsampley);
- if (xx < 0) xx = 0;
- if (yy < 0) yy = 0;
- if (xx > img.width() - 1) xx = img.width() - 1;
- if (yy > img.height() - 1) yy = img.height() - 1;
- int cimg = img.getPixel(xx, yy);
- int gimg = gt.getPixel(x, y);
- if (forbidden_classes.find(gimg) == forbidden_classes.end())
- {
- M(gimg, cimg)++;
- }
- }
- }
- /**
- test semantic segmentation routines
- */
- int main(int argc, char **argv)
- {
- std::set_terminate(__gnu_cxx::__verbose_terminate_handler);
- Config conf(argc, argv);
- bool show_result = conf.gB("debug", "show_results", false);
- bool write_results = conf.gB("debug", "write_results", false);
- bool write_results_pascal = conf.gB("debug", "write_results_pascal", false);
- std::string resultdir = conf.gS("debug", "resultdir", ".");
- if (write_results)
- {
- cerr << "Writing Results to " << resultdir << endl;
- }
- MultiDataset md(&conf);
- const ClassNames & classNames = md.getClassNames("train");
- //SemanticSegmentation *semseg = new SemSegLocal ( &conf, &md );
- //SemanticSegmentation *semseg = new SemSegSTF ( &conf, &md );
- //SemanticSegmentation *semseg = new SemSegCsurka ( &conf, &md);
- SemanticSegmentation *semseg = new SemSegContextTree ( &conf, &md);
- //SemanticSegmentation *semseg = new SemSegRegionBased(&conf, &md);
- const LabeledSet *testFiles = md["test"];
- NICE::Matrix M(classNames.getMaxClassno() + 1, classNames.getMaxClassno() + 1);
- M.set(0);
- set<int> forbidden_classes;
- std::string forbidden_classes_s = conf.gS("analysis", "forbidden_classes", "");
- classNames.getSelection(forbidden_classes_s, forbidden_classes);
- ProgressBar pb("Semantic Segmentation Analysis");
- pb.show();
- int fileno = 0;
- LOOP_ALL_S(*testFiles)
- {
- EACH_INFO(classno, info);
- pb.update(testFiles->count());
- std::string file = info.img();
- NICE::Image lm;
- GenericImage<double> probabilities;
-
- if (info.hasLocalizationInfo())
- {
- const LocalizationResult *l_gt = info.localization();
- lm.resize(l_gt->xsize, l_gt->ysize);
- lm.set(0);
- l_gt->calcLabeledImage(lm, classNames.getBackgroundClass());
- }
- semseg->semanticseg(file, lm, probabilities);
- fprintf(stderr, "testSemanticSegmentation: Segmentation finished !\n");
- NICE::Image lm_gt;
- if (info.hasLocalizationInfo())
- {
- const LocalizationResult *l_gt = info.localization();
- lm_gt.resize(l_gt->xsize, l_gt->ysize);
- lm_gt.set(0);
- fprintf(stderr, "testSemanticSegmentation: Generating Labeled NICE::Image (Ground-Truth)\n");
- l_gt->calcLabeledImage(lm_gt, classNames.getBackgroundClass());
- }
- std::string fname = StringTools::baseName(file, false);
- if (write_results_pascal)
- {
- NICE::Image pascal_lm(lm.width(), lm.height());
- int backgroundClass = classNames.getBackgroundClass();
- for (int y = 0 ; y < lm.height(); y++)
- for (int x = 0 ; x < lm.width(); x++)
- {
- int v = lm.getPixel(x, y);
- if (v == backgroundClass)
- pascal_lm.setPixel(x, y, 255);
- else
- pascal_lm.setPixel(x, y, 255 - v - 1);
- }
- char filename[1024];
- char *format = (char *)"pgm";
- sprintf(filename, "%s/%s.%s", resultdir.c_str(), fname.c_str(), format);
- pascal_lm.write(filename);
- }
- if (show_result || write_results)
- {
- NICE::ColorImage orig(file);
- NICE::ColorImage rgb;
- NICE::ColorImage rgb_gt;
- classNames.labelToRGB(lm, rgb);
- classNames.labelToRGB(lm_gt, rgb_gt);
- if (write_results)
- {
- char filename[1024];
- char *format = (char *)"ppm";
- sprintf(filename, "%06d.%s", fileno, format);
- std::string origfilename = resultdir + "/orig_" + string(filename);
- cerr << "Writing to file " << origfilename << endl;
- orig.write(origfilename);
- rgb.write(resultdir + "/result_" + string(filename));
- rgb_gt.write(resultdir + "/groundtruth_" + string(filename));
- }
- if (show_result)
- {
- #ifndef NOVISUAL
- showImage(rgb, "Result");
- showImage(rgb_gt, "Groundtruth");
- showImage(orig, "Input");
- #endif
- }
- }
- //#pragma omp critical
- updateMatrix(lm, lm_gt, M, forbidden_classes);
- cerr << M << endl;
- fileno++;
- }
- pb.hide();
- double overall = 0.0;
- double sumall = 0.0;
- for(int r = 0; r < (int)M.rows(); r++)
- {
- for(int c = 0; c < (int)M.cols(); c++)
- {
- if(r == c)
- overall += M(r,c);
- sumall += M(r,c);
- }
- }
-
- overall /= sumall;
-
- // normalizing M using rows
- for (int r = 0 ; r < (int)M.rows() ; r++)
- {
- double sum = 0.0;
- for (int c = 0 ; c < (int)M.cols() ; c++)
- sum += M(r, c);
- if (fabs(sum) > 1e-4)
- for (int c = 0 ; c < (int)M.cols() ; c++)
- M(r, c) /= sum;
- }
- cerr << M << endl;
-
- double avg_perf = 0.0;
- int classes_trained = 0;
- for (int r = 0 ; r < (int)M.rows() ; r++)
- {
- if ((classNames.existsClassno(r)) && (forbidden_classes.find(r) == forbidden_classes.end()))
- {
- avg_perf += M(r, r);
- classes_trained++;
- }
- }
- if (write_results)
- {
- ofstream fout((resultdir + "/res.txt").c_str(), ios::out);
- fout << "overall: " << overall << endl;
- fout << "Average Performance " << avg_perf / (classes_trained) << endl;
- fout << "Lower Bound " << 1.0 / classes_trained << endl;
- for (int r = 0 ; r < (int)M.rows() ; r++)
- {
- if ((classNames.existsClassno(r)) && (forbidden_classes.find(r) == forbidden_classes.end()))
- {
- std::string classname = classNames.text(r);
- fout << classname.c_str() << ": " << M(r, r) << endl;
- }
- }
- fout.close();
- }
- fprintf(stderr, "overall: %f\n", overall);
- fprintf(stderr, "Average Performance %f\n", avg_perf / (classes_trained));
- //fprintf(stderr, "Lower Bound %f\n", 1.0 / classes_trained);
- for (int r = 0 ; r < (int)M.rows() ; r++)
- {
- if ((classNames.existsClassno(r)) && (forbidden_classes.find(r) == forbidden_classes.end()))
- {
- std::string classname = classNames.text(r);
- fprintf(stderr, "%s: %f\n", classname.c_str(), M(r, r));
- }
- }
- delete semseg;
- return 0;
- }
|