12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778 |
- #include "SemSegContextTree.h"
- #include "vislearning/baselib/Globals.h"
- #include "vislearning/baselib/ProgressBar.h"
- #include "core/basics/StringTools.h"
- #include "vislearning/cbaselib/CachedExample.h"
- #include "vislearning/cbaselib/PascalResults.h"
- #include "vislearning/baselib/ColorSpace.h"
- #include "objrec/segmentation/RSMeanShift.h"
- #include "objrec/segmentation/RSGraphBased.h"
- #include "core/basics/numerictools.h"
- #include "core/basics/Timer.h"
- #include <omp.h>
- #include <iostream>
- #define BOUND(x,min,max) (((x)<(min))?(min):((x)>(max)?(max):(x)))
- #undef LOCALFEATS
- using namespace OBJREC;
- using namespace std;
- using namespace NICE;
- class MCImageAccess: public ValueAccess
- {
- public:
- virtual double getVal( const Features &feats, const int &x, const int &y, const int &channel )
- {
- return feats.feats->get( x, y, channel );
- }
- virtual string writeInfos()
- {
- return "raw";
- }
- };
- class ClassificationResultAcess: public ValueAccess
- {
- public:
- virtual double getVal( const Features &feats, const int &x, const int &y, const int &channel )
- {
- return ( *feats.tree )[feats.cfeats->get( x,y,feats.cTree )].dist[channel];
- }
- virtual string writeInfos()
- {
- return "context";
- }
- };
- class Minus: public Operation
- {
- public:
- virtual double getVal( const Features &feats, const int &x, const int &y )
- {
- int xsize, ysize;
- getXY( feats, xsize, ysize );
- double v1 = values->getVal( feats, BOUND( x + x1, 0, xsize - 1 ), BOUND( y + y1, 0, ysize - 1 ), channel1 );
- double v2 = values->getVal( feats, BOUND( x + x2, 0, xsize - 1 ), BOUND( y + y2, 0, ysize - 1 ), channel2 );
- return v1 -v2;
- }
- virtual Operation* clone()
- {
- return new Minus();
- }
- virtual string writeInfos()
- {
- string out = "Minus";
- if ( values != NULL )
- out += values->writeInfos();
- return out;
- }
- virtual OperationTypes getOps()
- {
- return MINUS;
- }
- };
- class MinusAbs: public Operation
- {
- public:
- virtual double getVal( const Features &feats, const int &x, const int &y )
- {
- int xsize, ysize;
- getXY( feats, xsize, ysize );
- double v1 = values->getVal( feats, BOUND( x + x1, 0, xsize - 1 ), BOUND( y + y1, 0, ysize - 1 ), channel1 );
- double v2 = values->getVal( feats, BOUND( x + x2, 0, xsize - 1 ), BOUND( y + y2, 0, ysize - 1 ), channel2 );
- return abs( v1 -v2 );
- }
- virtual Operation* clone()
- {
- return new MinusAbs();
- };
- virtual string writeInfos()
- {
- string out = "MinusAbs";
- if ( values != NULL )
- out += values->writeInfos();
- return out;
- }
- virtual OperationTypes getOps()
- {
- return MINUSABS;
- }
- };
- class Addition: public Operation
- {
- public:
- virtual double getVal( const Features &feats, const int &x, const int &y )
- {
- int xsize, ysize;
- getXY( feats, xsize, ysize );
- double v1 = values->getVal( feats, BOUND( x + x1, 0, xsize - 1 ), BOUND( y + y1, 0, ysize - 1 ), channel1 );
- double v2 = values->getVal( feats, BOUND( x + x2, 0, xsize - 1 ), BOUND( y + y2, 0, ysize - 1 ), channel2 );
- return v1 + v2;
- }
- virtual Operation* clone()
- {
- return new Addition();
- }
- virtual string writeInfos()
- {
- string out = "Addition";
- if ( values != NULL )
- out += values->writeInfos();
- return out;
- }
- virtual OperationTypes getOps()
- {
- return ADDITION;
- }
- };
- class Only1: public Operation
- {
- public:
- virtual double getVal( const Features &feats, const int &x, const int &y )
- {
- int xsize, ysize;
- getXY( feats, xsize, ysize );
- double v1 = values->getVal( feats, BOUND( x + x1, 0, xsize - 1 ), BOUND( y + y1, 0, ysize - 1 ), channel1 );
- return v1;
- }
- virtual Operation* clone()
- {
- return new Only1();
- }
- virtual string writeInfos()
- {
- string out = "Only1";
- if ( values != NULL )
- out += values->writeInfos();
- return out;
- }
- virtual OperationTypes getOps()
- {
- return ONLY1;
- }
- };
- class RelativeXPosition: public Operation
- {
- public:
- virtual double getVal( const Features &feats, const int &x, const int &y )
- {
- int xsize, ysize;
- getXY( feats, xsize, ysize );
- return ( double )x / ( double )xsize;
- }
- virtual Operation* clone()
- {
- return new RelativeXPosition();
- }
- virtual string writeInfos()
- {
- return "RelativeXPosition";
- }
- virtual OperationTypes getOps()
- {
- return RELATIVEXPOSITION;
- }
- };
- class RelativeYPosition: public Operation
- {
- public:
- virtual double getVal( const Features &feats, const int &x, const int &y )
- {
- int xsize, ysize;
- getXY( feats, xsize, ysize );
- return ( double )x / ( double )xsize;
- }
- virtual Operation* clone()
- {
- return new RelativeYPosition();
- }
- virtual string writeInfos()
- {
- return "RelativeYPosition";
- }
- virtual OperationTypes getOps()
- {
- return RELATIVEYPOSITION;
- }
- };
- class IntegralOps: public Operation
- {
- public:
- virtual void set( int _x1, int _y1, int _x2, int _y2, int _channel1, int _channel2, ValueAccess *_values )
- {
- x1 = min( _x1, _x2 );
- y1 = min( _y1, _y2 );
- x2 = max( _x1, _x2 );
- y2 = max( _y1, _y2 );
- channel1 = _channel1;
- channel2 = _channel2;
- values = _values;
- }
- virtual double getVal( const Features &feats, const int &x, const int &y )
- {
- int xsize, ysize;
- getXY( feats, xsize, ysize );
- return computeMean( *feats.integralImg, BOUND( x + x1, 0, xsize - 1 ), BOUND( y + y1, 0, ysize - 1 ), BOUND( x + x2, 0, xsize - 1 ), BOUND( y + y2, 0, ysize - 1 ), channel1 );
- }
- inline double computeMean( const NICE::MultiChannelImageT<double> &intImg, const int &uLx, const int &uLy, const int &lRx, const int &lRy, const int &chan )
- {
- double val1 = intImg.get( uLx, uLy, chan );
- double val2 = intImg.get( lRx, uLy, chan );
- double val3 = intImg.get( uLx, lRy, chan );
- double val4 = intImg.get( lRx, lRy, chan );
- double area = ( lRx - uLx ) * ( lRy - uLy );
- if ( area == 0 )
- return 0.0;
- return ( val1 + val4 - val2 - val3 ) / area;
- }
- virtual Operation* clone()
- {
- return new IntegralOps();
- }
- virtual string writeInfos()
- {
- return "IntegralOps";
- }
- virtual OperationTypes getOps()
- {
- return INTEGRAL;
- }
- };
- class GlobalFeats: public IntegralOps
- {
- public:
- virtual double getVal( const Features &feats, const int &x, const int &y )
- {
- int xsize, ysize;
- getXY( feats, xsize, ysize );
- return computeMean( *feats.integralImg, 0, 0, xsize - 1, ysize - 1, channel1 );
- }
- virtual Operation* clone()
- {
- return new GlobalFeats();
- }
- virtual string writeInfos()
- {
- return "GlobalFeats";
- }
- virtual OperationTypes getOps()
- {
- return GLOBALFEATS;
- }
- };
- class IntegralCenteredOps: public IntegralOps
- {
- public:
- virtual void set( int _x1, int _y1, int _x2, int _y2, int _channel1, int _channel2, ValueAccess *_values )
- {
- x1 = abs( _x1 );
- y1 = abs( _y1 );
- x2 = abs( _x2 );
- y2 = abs( _y2 );
- channel1 = _channel1;
- channel2 = _channel2;
- values = _values;
- }
- virtual double getVal( const Features &feats, const int &x, const int &y )
- {
- int xsize, ysize;
- getXY( feats, xsize, ysize );
- return computeMean( *feats.integralImg, BOUND( x - x1, 0, xsize - 1 ), BOUND( y - y1, 0, ysize - 1 ), BOUND( x + x1, 0, xsize - 1 ), BOUND( y + y1, 0, ysize - 1 ), channel1 );
- }
- virtual Operation* clone()
- {
- return new IntegralCenteredOps();
- }
- virtual string writeInfos()
- {
- return "IntegralCenteredOps";
- }
- virtual OperationTypes getOps()
- {
- return INTEGRALCENT;
- }
- };
- class BiIntegralCenteredOps: public IntegralCenteredOps
- {
- public:
- virtual void set( int _x1, int _y1, int _x2, int _y2, int _channel1, int _channel2, ValueAccess *_values )
- {
- x1 = min( abs( _x1 ), abs( _x2 ) );
- y1 = min( abs( _y1 ), abs( _y2 ) );
- x2 = max( abs( _x1 ), abs( _x2 ) );
- y2 = max( abs( _y1 ), abs( _y2 ) );
- channel1 = _channel1;
- channel2 = _channel2;
- values = _values;
- }
- virtual double getVal( const Features &feats, const int &x, const int &y )
- {
- int xsize, ysize;
- getXY( feats, xsize, ysize );
- return computeMean( *feats.integralImg, BOUND( x - x1, 0, xsize - 1 ), BOUND( y - y1, 0, ysize - 1 ), BOUND( x + x1, 0, xsize - 1 ), BOUND( y + y1, 0, ysize - 1 ), channel1 ) - computeMean( *feats.integralImg, BOUND( x - x2, 0, xsize - 1 ), BOUND( y - y2, 0, ysize - 1 ), BOUND( x + x2, 0, xsize - 1 ), BOUND( y + y2, 0, ysize - 1 ), channel1 );
- }
- virtual Operation* clone()
- {
- return new BiIntegralCenteredOps();
- }
- virtual string writeInfos()
- {
- return "BiIntegralCenteredOps";
- }
- virtual OperationTypes getOps()
- {
- return BIINTEGRALCENT;
- }
- };
- class HaarHorizontal: public IntegralCenteredOps
- {
- virtual double getVal( const Features &feats, const int &x, const int &y )
- {
- int xsize, ysize;
- getXY( feats, xsize, ysize );
- int tlx = BOUND( x - x1, 0, xsize - 1 );
- int tly = BOUND( y - y1, 0, ysize - 1 );
- int lrx = BOUND( x + x1, 0, xsize - 1 );
- int lry = BOUND( y + y1, 0, ysize - 1 );
- return computeMean( *feats.integralImg, tlx, tly, lrx, y, channel1 ) - computeMean( *feats.integralImg, tlx, y, lrx, lry, channel1 );
- }
- virtual Operation* clone()
- {
- return new HaarHorizontal();
- }
- virtual string writeInfos()
- {
- return "HaarHorizontal";
- }
- virtual OperationTypes getOps()
- {
- return HAARHORIZ;
- }
- };
- class HaarVertical: public IntegralCenteredOps
- {
- virtual double getVal( const Features &feats, const int &x, const int &y )
- {
- int xsize, ysize;
- getXY( feats, xsize, ysize );
- int tlx = BOUND( x - x1, 0, xsize - 1 );
- int tly = BOUND( y - y1, 0, ysize - 1 );
- int lrx = BOUND( x + x1, 0, xsize - 1 );
- int lry = BOUND( y + y1, 0, ysize - 1 );
- return computeMean( *feats.integralImg, tlx, tly, x, lry, channel1 ) - computeMean( *feats.integralImg, x, tly, lrx, lry, channel1 );
- }
- virtual Operation* clone()
- {
- return new HaarVertical();
- }
- virtual string writeInfos()
- {
- return "HaarVertical";
- }
- virtual OperationTypes getOps()
- {
- return HAARVERT;
- }
- };
- class HaarDiag: public IntegralCenteredOps
- {
- virtual double getVal( const Features &feats, const int &x, const int &y )
- {
- int xsize, ysize;
- getXY( feats, xsize, ysize );
- int tlx = BOUND( x - x1, 0, xsize - 1 );
- int tly = BOUND( y - y1, 0, ysize - 1 );
- int lrx = BOUND( x + x1, 0, xsize - 1 );
- int lry = BOUND( y + y1, 0, ysize - 1 );
- return computeMean( *feats.integralImg, tlx, tly, x, y, channel1 ) + computeMean( *feats.integralImg, x, y, lrx, lry, channel1 ) - computeMean( *feats.integralImg, tlx, y, x, lry, channel1 ) - computeMean( *feats.integralImg, x, tly, lrx, y, channel1 );
- }
- virtual Operation* clone()
- {
- return new HaarDiag();
- }
- virtual string writeInfos()
- {
- return "HaarDiag";
- }
- virtual OperationTypes getOps()
- {
- return HAARDIAG;
- }
- };
- class Haar3Horiz: public BiIntegralCenteredOps
- {
- virtual double getVal( const Features &feats, const int &x, const int &y )
- {
- int xsize, ysize;
- getXY( feats, xsize, ysize );
- int tlx = BOUND( x - x2, 0, xsize - 1 );
- int tly = BOUND( y - y2, 0, ysize - 1 );
- int mtly = BOUND( y - y1, 0, ysize - 1 );
- int mlry = BOUND( y + y1, 0, ysize - 1 );
- int lrx = BOUND( x + x2, 0, xsize - 1 );
- int lry = BOUND( y + y2, 0, ysize - 1 );
- return computeMean( *feats.integralImg, tlx, tly, lrx, mtly, channel1 ) - computeMean( *feats.integralImg, tlx, mtly, lrx, mlry, channel1 ) + computeMean( *feats.integralImg, tlx, mlry, lrx, lry, channel1 );
- }
- virtual Operation* clone()
- {
- return new Haar3Horiz();
- }
- virtual string writeInfos()
- {
- return "Haar3Horiz";
- }
- virtual OperationTypes getOps()
- {
- return HAAR3HORIZ;
- }
- };
- class Haar3Vert: public BiIntegralCenteredOps
- {
- virtual double getVal( const Features &feats, const int &x, const int &y )
- {
- int xsize, ysize;
- getXY( feats, xsize, ysize );
- int tlx = BOUND( x - x2, 0, xsize - 1 );
- int tly = BOUND( y - y2, 0, ysize - 1 );
- int mtlx = BOUND( x - x1, 0, xsize - 1 );
- int mlrx = BOUND( x + x1, 0, xsize - 1 );
- int lrx = BOUND( x + x2, 0, xsize - 1 );
- int lry = BOUND( y + y2, 0, ysize - 1 );
- return computeMean( *feats.integralImg, tlx, tly, mtlx, lry, channel1 ) - computeMean( *feats.integralImg, mtlx, tly, mlrx, lry, channel1 ) + computeMean( *feats.integralImg, mlrx, tly, lrx, lry, channel1 );
- }
- virtual Operation* clone()
- {
- return new Haar3Vert();
- }
- virtual string writeInfos()
- {
- return "Haar3Vert";
- }
- virtual OperationTypes getOps()
- {
- return HAAR3VERT;
- }
- };
- SemSegContextTree::SemSegContextTree( const Config *conf, const MultiDataset *md )
- : SemanticSegmentation( conf, &( md->getClassNames( "train" ) ) )
- {
- this->conf = conf;
- string section = "SSContextTree";
- lfcw = new LFColorWeijer( conf );
- grid = conf->gI( section, "grid", 10 );
- maxSamples = conf->gI( section, "max_samples", 2000 );
- minFeats = conf->gI( section, "min_feats", 50 );
- maxDepth = conf->gI( section, "max_depth", 10 );
- windowSize = conf->gI( section, "window_size", 16 );
- featsPerSplit = conf->gI( section, "feats_per_split", 200 );
- useShannonEntropy = conf->gB( section, "use_shannon_entropy", true );
- nbTrees = conf->gI( section, "amount_trees", 1 );
- string segmentationtype = conf->gS( section, "segmentation_type", "meanshift" );
- useGaussian = conf->gB( section, "use_gaussian", true );
- if ( useGaussian )
- throw( "there something wrong with using gaussian! first fix it!" );
- pixelWiseLabeling = false;
- if ( segmentationtype == "meanshift" )
- segmentation = new RSMeanShift( conf );
- else if ( segmentationtype == "none" )
- {
- segmentation = NULL;
- pixelWiseLabeling = true;
- }
- else if ( segmentationtype == "felzenszwalb" )
- segmentation = new RSGraphBased( conf );
- else
- throw( "no valid segmenation_type\n please choose between none, meanshift and felzenszwalb\n" );
- ftypes = conf->gI( section, "features", 2 );;
- ops.push_back( new Minus() );
- ops.push_back( new MinusAbs() );
- ops.push_back( new Addition() );
- ops.push_back( new Only1() );
- ops.push_back( new RelativeXPosition() );
- ops.push_back( new RelativeYPosition() );
- cops.push_back( new BiIntegralCenteredOps() );
- cops.push_back( new IntegralCenteredOps() );
- cops.push_back( new IntegralOps() );
- cops.push_back( new HaarHorizontal() );
- cops.push_back( new HaarVertical() );
- cops.push_back( new HaarDiag() );
- cops.push_back( new Haar3Horiz() );
- cops.push_back( new Haar3Vert() );
-
- opOverview = vector<int>( NBOPERATIONS, 0 );
- calcVal.push_back( new MCImageAccess() );
- calcVal.push_back( new ClassificationResultAcess() );
- classnames = md->getClassNames( "train" );
-
-
-
- train( md );
- }
- SemSegContextTree::~SemSegContextTree()
- {
- }
- double SemSegContextTree::getBestSplit( std::vector<NICE::MultiChannelImageT<double> > &feats, std::vector<NICE::MultiChannelImageT<int> > ¤tfeats, std::vector<NICE::MultiChannelImageT<double> > &integralImgs, const std::vector<NICE::MatrixT<int> > &labels, int node, Operation *&splitop, double &splitval, const int &tree )
- {
- Timer t;
- t.start();
- int imgCount = 0, featdim = 0;
- try
- {
- imgCount = ( int )feats.size();
- featdim = feats[0].channels();
- }
- catch ( Exception )
- {
- cerr << "no features computed?" << endl;
- }
- double bestig = -numeric_limits< double >::max();
- splitop = NULL;
- splitval = -1.0;
- set<vector<int> >selFeats;
- map<int, int> e;
- int featcounter = forest[tree][node].featcounter;
-
- if ( featcounter < minFeats )
- {
-
- return 0.0;
- }
- vector<double> fraction( a.size(), 0.0 );
- for ( uint i = 0; i < fraction.size(); i++ )
- {
- if ( forbidden_classes.find( labelmapback[i] ) != forbidden_classes.end() )
- fraction[i] = 0;
- else
- fraction[i] = (( double )maxSamples ) / (( double )featcounter * a[i] * a.size() );
-
- }
- featcounter = 0;
- for ( int iCounter = 0; iCounter < imgCount; iCounter++ )
- {
- int xsize = ( int )currentfeats[iCounter].width();
- int ysize = ( int )currentfeats[iCounter].height();
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- if ( currentfeats[iCounter].get( x, y, tree ) == node )
- {
- int cn = labels[iCounter]( x, y );
- double randD = ( double )rand() / ( double )RAND_MAX;
- if ( randD < fraction[labelmap[cn]] )
- {
- vector<int> tmp( 3, 0 );
- tmp[0] = iCounter;
- tmp[1] = x;
- tmp[2] = y;
- featcounter++;
- selFeats.insert( tmp );
- e[cn]++;
- }
- }
- }
- }
- }
-
-
- map<int, int>::iterator mapit;
- double globent = 0.0;
- for ( mapit = e.begin() ; mapit != e.end(); mapit++ )
- {
-
- double p = ( double )( *mapit ).second / ( double )featcounter;
- globent += p * log2( p );
- }
- globent = -globent;
- if ( globent < 0.5 )
- {
-
- return 0.0;
- }
- int classes = ( int )forest[tree][0].dist.size();
- featsel.clear();
- for ( int i = 0; i < featsPerSplit; i++ )
- {
- int x1, x2, y1, y2;
- int ft = ( int )(( double )rand() / ( double )RAND_MAX * ( double )ftypes );
- int tmpws = windowSize;
- if ( integralImgs[0].width() == 0 )
- ft = 0;
- if ( ft > 0 )
- {
- tmpws *= 4;
- }
- if ( useGaussian )
- {
- double sigma = ( double )tmpws / 2.0;
- x1 = randGaussDouble( sigma ) * ( double )tmpws;
- x2 = randGaussDouble( sigma ) * ( double )tmpws;
- y1 = randGaussDouble( sigma ) * ( double )tmpws;
- y2 = randGaussDouble( sigma ) * ( double )tmpws;
- }
- else
- {
- x1 = ( int )(( double )rand() / ( double )RAND_MAX * ( double )tmpws ) - tmpws / 2;
- x2 = ( int )(( double )rand() / ( double )RAND_MAX * ( double )tmpws ) - tmpws / 2;
- y1 = ( int )(( double )rand() / ( double )RAND_MAX * ( double )tmpws ) - tmpws / 2;
- y2 = ( int )(( double )rand() / ( double )RAND_MAX * ( double )tmpws ) - tmpws / 2;
- }
- if ( ft == 0 )
- {
- int f1 = ( int )(( double )rand() / ( double )RAND_MAX * ( double )featdim );
- int f2 = ( int )(( double )rand() / ( double )RAND_MAX * ( double )featdim );
- int o = ( int )(( double )rand() / ( double )RAND_MAX * ( double )ops.size() );
- Operation *op = ops[o]->clone();
- op->set( x1, y1, x2, y2, f1, f2, calcVal[ft] );
- featsel.push_back( op );
- }
- else if ( ft == 1 )
- {
- int opssize = ( int )ops.size();
-
- int o = ( int )(( double )rand() / ( double )RAND_MAX * ((( double )cops.size() ) + ( double )opssize ) );
- Operation *op;
- if ( o < opssize )
- {
- int chans = ( int )forest[0][0].dist.size();
- int f1 = ( int )(( double )rand() / ( double )RAND_MAX * ( double )chans );
- int f2 = ( int )(( double )rand() / ( double )RAND_MAX * ( double )chans );
- op = ops[o]->clone();
- op->set( x1, y1, x2, y2, f1, f2, calcVal[ft] );
- }
- else
- {
- int chans = integralImgs[0].channels();
- int f1 = ( int )(( double )rand() / ( double )RAND_MAX * ( double )chans );
- int f2 = ( int )(( double )rand() / ( double )RAND_MAX * ( double )chans );
- o -= opssize;
- op = cops[o]->clone();
- op->set( x1, y1, x2, y2, f1, f2, calcVal[ft] );
- }
- featsel.push_back( op );
- }
- }
- #pragma omp parallel for private(mapit)
- for ( int f = 0; f < featsPerSplit; f++ )
- {
- double l_bestig = -numeric_limits< double >::max();
- double l_splitval = -1.0;
- set<vector<int> >::iterator it;
- vector<double> vals;
- for ( it = selFeats.begin() ; it != selFeats.end(); it++ )
- {
- Features feat;
- feat.feats = &feats[( *it )[0]];
- feat.cfeats = ¤tfeats[( *it )[0]];
- feat.cTree = tree;
- feat.tree = &forest[tree];
- feat.integralImg = &integralImgs[( *it )[0]];
- vals.push_back( featsel[f]->getVal( feat, ( *it )[1], ( *it )[2] ) );
- }
- int counter = 0;
- for ( it = selFeats.begin() ; it != selFeats.end(); it++ , counter++ )
- {
- set<vector<int> >::iterator it2;
- double val = vals[counter];
- map<int, int> eL, eR;
- int counterL = 0, counterR = 0;
- int counter2 = 0;
- for ( it2 = selFeats.begin() ; it2 != selFeats.end(); it2++, counter2++ )
- {
- int cn = labels[( *it2 )[0]](( *it2 )[1], ( *it2 )[2] );
-
- if ( vals[counter2] < val )
- {
-
- eL[cn] = eL[cn] + 1;
- counterL++;
- }
- else
- {
-
- eR[cn] = eR[cn] + 1;
- counterR++;
- }
- }
- double leftent = 0.0;
- for ( mapit = eL.begin() ; mapit != eL.end(); mapit++ )
- {
- double p = ( double )( *mapit ).second / ( double )counterL;
- leftent -= p * log2( p );
- }
- double rightent = 0.0;
- for ( mapit = eR.begin() ; mapit != eR.end(); mapit++ )
- {
- double p = ( double )( *mapit ).second / ( double )counterR;
- rightent -= p * log2( p );
- }
-
- double pl = ( double )counterL / ( double )( counterL + counterR );
- double ig = globent - ( 1.0 - pl ) * rightent - pl * leftent;
-
- if ( useShannonEntropy )
- {
- double esplit = - ( pl * log( pl ) + ( 1 - pl ) * log( 1 - pl ) );
- ig = 2 * ig / ( globent + esplit );
- }
- if ( ig > l_bestig )
- {
- l_bestig = ig;
- l_splitval = val;
- }
- }
- #pragma omp critical
- {
-
-
-
- if ( l_bestig > bestig )
- {
- bestig = l_bestig;
- splitop = featsel[f];
- splitval = l_splitval;
- }
- }
- }
-
-
-
-
-
-
-
-
- #ifdef debug
- cout << "globent: " << globent << " bestig " << bestig << " splitval: " << splitval << endl;
- #endif
- return bestig;
- }
- inline double SemSegContextTree::getMeanProb( const int &x, const int &y, const int &channel, const MultiChannelImageT<int> ¤tfeats )
- {
- double val = 0.0;
- for ( int tree = 0; tree < nbTrees; tree++ )
- {
- val += forest[tree][currentfeats.get( x,y,tree )].dist[channel];
- }
- return val / ( double )nbTrees;
- }
- void SemSegContextTree::computeIntegralImage( const NICE::MultiChannelImageT<int> ¤tfeats, const NICE::MultiChannelImageT<double> &lfeats, NICE::MultiChannelImageT<double> &integralImage )
- {
- int xsize = currentfeats.width();
- int ysize = currentfeats.height();
- int channels = ( int )forest[0][0].dist.size();
- #pragma omp parallel for
- for ( int c = 0; c < channels; c++ )
- {
- integralImage.set( 0, 0, getMeanProb( 0, 0, c, currentfeats ), c );
-
- for ( int y = 1; y < ysize; y++ )
- {
- integralImage.set( 0, y, getMeanProb( 0, y, c, currentfeats ) + integralImage.get( 0, y, c ), c );
- }
-
- for ( int x = 1; x < xsize; x++ )
- {
- integralImage.set( x, 0, getMeanProb( x, 0, c, currentfeats ) + integralImage.get( x, 0, c ), c );
- }
-
- for ( int y = 1; y < ysize; y++ )
- {
- for ( int x = 1; x < xsize; x++ )
- {
- double val = getMeanProb( x, y, c, currentfeats ) + integralImage.get( x, y - 1, c ) + integralImage.get( x - 1, y, c ) - integralImage.get( x - 1, y - 1, c );
- integralImage.set( x, y, val, c );
- }
- }
- }
- int channels2 = ( int )lfeats.channels();
- xsize = lfeats.width();
- ysize = lfeats.height();
- if ( integralImage.get( xsize - 1, ysize - 1, channels ) == 0.0 )
- {
- #pragma omp parallel for
- for ( int c1 = 0; c1 < channels2; c1++ )
- {
- int c = channels + c1;
- integralImage.set( 0, 0, lfeats.get( 0, 0, c1 ), c );
-
- for ( int y = 1; y < ysize; y++ )
- {
- integralImage.set( 0, y, lfeats.get( 0, y, c1 ) + integralImage.get( 0, y, c ), c );
- }
-
- for ( int x = 1; x < xsize; x++ )
- {
- integralImage.set( x, 0, lfeats.get( x, 0, c1 ) + integralImage.get( x, 0, c ), c );
- }
-
- for ( int y = 1; y < ysize; y++ )
- {
- for ( int x = 1; x < xsize; x++ )
- {
- double val = lfeats.get( x, y, c1 ) + integralImage.get( x, y - 1, c ) + integralImage.get( x - 1, y, c ) - integralImage.get( x - 1, y - 1, c );
- integralImage.set( x, y, val, c );
- }
- }
- }
- }
- }
- void SemSegContextTree::train( const MultiDataset *md )
- {
- const LabeledSet train = * ( *md )["train"];
- const LabeledSet *trainp = &train;
- ProgressBar pb( "compute feats" );
- pb.show();
-
- vector<MultiChannelImageT<double> > allfeats;
- vector<MultiChannelImageT<int> > currentfeats;
- vector<MatrixT<int> > labels;
- std::string forbidden_classes_s = conf->gS( "analysis", "donttrain", "" );
- if ( forbidden_classes_s == "" )
- {
- forbidden_classes_s = conf->gS( "analysis", "forbidden_classes", "" );
- }
- classnames.getSelection( forbidden_classes_s, forbidden_classes );
- int imgcounter = 0;
-
- int amountPixels = 0;
-
- LOOP_ALL_S( *trainp )
- {
- EACH_INFO( classno, info );
- NICE::ColorImage img;
- std::string currentFile = info.img();
- CachedExample *ce = new CachedExample( currentFile );
- const LocalizationResult *locResult = info.localization();
- if ( locResult->size() <= 0 )
- {
- fprintf( stderr, "WARNING: NO ground truth polygons found for %s !\n",
- currentFile.c_str() );
- continue;
- }
- fprintf( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n", currentFile.c_str() );
- int xsize, ysize;
- ce->getImageSize( xsize, ysize );
- amountPixels += xsize*ysize;
- MatrixT<int> tmpMat( xsize, ysize );
- currentfeats.push_back( MultiChannelImageT<int>( xsize, ysize, nbTrees ) );
- currentfeats[imgcounter].setAll( 0 );
- labels.push_back( tmpMat );
- try {
- img = ColorImage( currentFile );
- } catch ( Exception ) {
- cerr << "SemSeg: error opening image file <" << currentFile << ">" << endl;
- continue;
- }
- Globals::setCurrentImgFN( currentFile );
-
- MultiChannelImageT<double> feats;
- allfeats.push_back( feats );
- #ifdef LOCALFEATS
- lfcw->getFeats( img, allfeats[imgcounter] );
- #else
- allfeats[imgcounter].reInit( xsize, ysize, 3, true );
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int r = 0; r < 3; r++ )
- {
- allfeats[imgcounter].set( x, y, img.getPixel( x, y, r ), r );
- }
- }
- }
- allfeats[imgcounter] = ColorSpace::rgbtolab(allfeats[imgcounter]);
- #endif
-
- NICE::Image pixelLabels( xsize, ysize );
- pixelLabels.set( 0 );
- locResult->calcLabeledImage( pixelLabels, ( *classNames ).getBackgroundClass() );
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- classno = pixelLabels.getPixel( x, y );
- labels[imgcounter]( x, y ) = classno;
- if ( forbidden_classes.find( classno ) != forbidden_classes.end() )
- continue;
- labelcounter[classno]++;
- }
- }
- imgcounter++;
- pb.update( trainp->count() );
- delete ce;
- }
- pb.hide();
- map<int, int>::iterator mapit;
- int classes = 0;
- for ( mapit = labelcounter.begin(); mapit != labelcounter.end(); mapit++ )
- {
- labelmap[mapit->first] = classes;
- labelmapback[classes] = mapit->first;
- classes++;
- }
-
- int featcounter = 0;
- a = vector<double>( classes, 0.0 );
- for ( int iCounter = 0; iCounter < imgcounter; iCounter++ )
- {
- int xsize = ( int )currentfeats[iCounter].width();
- int ysize = ( int )currentfeats[iCounter].height();
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- featcounter++;
- int cn = labels[iCounter]( x, y );
- a[labelmap[cn]] ++;
- }
- }
- }
- for ( int i = 0; i < ( int )a.size(); i++ )
- {
- a[i] /= ( double )featcounter;
- }
- #ifdef DEBUG
- for ( int i = 0; i < ( int )a.size(); i++ )
- {
- cout << "a[" << i << "]: " << a[i] << endl;
- }
- cout << "a.size: " << a.size() << endl;
- #endif
- depth = 0;
- for ( int t = 0; t < nbTrees; t++ )
- {
- vector<TreeNode> tree;
- tree.push_back( TreeNode() );
- tree[0].dist = vector<double>( classes, 0.0 );
- tree[0].depth = depth;
- tree[0].featcounter = amountPixels;
- forest.push_back( tree );
- }
- vector<int> startnode( nbTrees, 0 );
- bool allleaf = false;
-
- vector<MultiChannelImageT<double> > integralImgs( imgcounter, MultiChannelImageT<double>() );
- while ( !allleaf && depth < maxDepth )
- {
- #ifdef DEBUG
- cout << "depth: " << depth << endl;
- #endif
- allleaf = true;
- vector<MultiChannelImageT<int> > lastfeats = currentfeats;
- #if 1
- Timer timer;
- timer.start();
- #endif
- for ( int tree = 0; tree < nbTrees; tree++ )
- {
- int t = ( int ) forest[tree].size();
- int s = startnode[tree];
- startnode[tree] = t;
-
-
- #if 0
- timer.stop();
- cout << "time before tree: " << timer.getLast() << endl;
- timer.start();
- #endif
- for ( int i = s; i < t; i++ )
- {
- if ( !forest[tree][i].isleaf && forest[tree][i].left < 0 )
- {
- #if 0
- timer.stop();
- cout << "time 1: " << timer.getLast() << endl;
- timer.start();
- #endif
- Operation *splitfeat = NULL;
- double splitval;
- double bestig = getBestSplit( allfeats, lastfeats, integralImgs, labels, i, splitfeat, splitval, tree );
- #if 0
- timer.stop();
- double tl = timer.getLast();
-
- if(tl > 10.0)
- {
- cout << "time 2: " << tl << endl;
- cout << "slow split: " << splitfeat->writeInfos() << endl;
- getchar();
- }
- timer.start();
- #endif
- forest[tree][i].feat = splitfeat;
- forest[tree][i].decision = splitval;
- if ( splitfeat != NULL )
- {
- allleaf = false;
- int left = forest[tree].size();
- forest[tree].push_back( TreeNode() );
- forest[tree].push_back( TreeNode() );
- int right = left + 1;
- forest[tree][i].left = left;
- forest[tree][i].right = right;
- forest[tree][left].dist = vector<double>( classes, 0.0 );
- forest[tree][right].dist = vector<double>( classes, 0.0 );
- forest[tree][left].depth = depth + 1;
- forest[tree][right].depth = depth + 1;
- forest[tree][left].featcounter = 0;
- forest[tree][right].featcounter = 0;
- #if 0
- timer.stop();
- cout << "time 3: " << timer.getLast() << endl;
- timer.start();
- #endif
- #pragma omp parallel for
- for ( int iCounter = 0; iCounter < imgcounter; iCounter++ )
- {
- int xsize = currentfeats[iCounter].width();
- int ysize = currentfeats[iCounter].height();
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- if ( currentfeats[iCounter].get( x, y, tree ) == i )
- {
- Features feat;
- feat.feats = &allfeats[iCounter];
- feat.cfeats = &lastfeats[iCounter];
- feat.cTree = tree;
- feat.tree = &forest[tree];
- feat.integralImg = &integralImgs[iCounter];
- double val = splitfeat->getVal( feat, x, y );
- #pragma omp critical
- if ( val < splitval )
- {
- currentfeats[iCounter].set( x, y, left, tree );
- forest[tree][left].dist[labelmap[labels[iCounter]( x, y )]]++;
- forest[tree][left].featcounter++;
- }
- else
- {
- currentfeats[iCounter].set( x, y, right, tree );
- forest[tree][right].dist[labelmap[labels[iCounter]( x, y )]]++;
- forest[tree][right].featcounter++;
- }
- }
- }
- }
-
- }
- #if 0
- timer.stop();
- cout << "time 4: " << timer.getLast() << endl;
- timer.start();
- #endif
-
- double lcounter = 0.0, rcounter = 0.0;
- for ( uint d = 0; d < forest[tree][left].dist.size(); d++ )
- {
- if ( forbidden_classes.find( labelmapback[d] ) != forbidden_classes.end() )
- {
- forest[tree][left].dist[d] = 0;
- forest[tree][right].dist[d] = 0;
- }
- else
- {
- forest[tree][left].dist[d] /= a[d];
- lcounter += forest[tree][left].dist[d];
- forest[tree][right].dist[d] /= a[d];
- rcounter += forest[tree][right].dist[d];
- }
- }
- #if 0
- timer.stop();
- cout << "time 5: " << timer.getLast() << endl;
- timer.start();
- #endif
- if ( lcounter <= 0 || rcounter <= 0 )
- {
- cout << "lcounter : " << lcounter << " rcounter: " << rcounter << endl;
- cout << "splitval: " << splitval << " splittype: " << splitfeat->writeInfos() << endl;
- cout << "bestig: " << bestig << endl;
- for ( int iCounter = 0; iCounter < imgcounter; iCounter++ )
- {
- int xsize = currentfeats[iCounter].width();
- int ysize = currentfeats[iCounter].height();
- int counter = 0;
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- if ( lastfeats[iCounter].get( x, y, tree ) == i )
- {
- if ( ++counter > 30 )
- break;
- Features feat;
- feat.feats = &allfeats[iCounter];
- feat.cfeats = &lastfeats[iCounter];
- feat.cTree = tree;
- feat.tree = &forest[tree];
- feat.integralImg = &integralImgs[iCounter];
- double val = splitfeat->getVal( feat, x, y );
- cout << "splitval: " << splitval << " val: " << val << endl;
- }
- }
- }
- }
- assert( lcounter > 0 && rcounter > 0 );
- }
- for ( uint d = 0; d < forest[tree][left].dist.size(); d++ )
- {
- forest[tree][left].dist[d] /= lcounter;
- forest[tree][right].dist[d] /= rcounter;
- }
- }
- else
- {
- forest[tree][i].isleaf = true;
- }
- }
- }
- #if 0
- timer.stop();
- cout << "time after tree: " << timer.getLast() << endl;
- timer.start();
- #endif
- }
-
-
- int channels = classes + allfeats[0].channels();
- #if 0
- timer.stop();
- cout << "time for part0: " << timer.getLast() << endl;
- timer.start();
- #endif
-
- if ( integralImgs[0].width() == 0 )
- {
- for ( int i = 0; i < imgcounter; i++ )
- {
- int xsize = allfeats[i].width();
- int ysize = allfeats[i].height();
- integralImgs[i].reInit( xsize, ysize, channels );
- integralImgs[i].setAll( 0.0 );
- }
- }
- #if 0
- timer.stop();
- cout << "time for part1: " << timer.getLast() << endl;
- timer.start();
- #endif
- #pragma omp parallel for
- for ( int i = 0; i < imgcounter; i++ )
- {
- computeIntegralImage( currentfeats[i], allfeats[i], integralImgs[i] );
- }
- #if 1
- timer.stop();
- cout << "time for depth " << depth << ": " << timer.getLast() << endl;
- #endif
- depth++;
- }
- #ifdef DEBUG
- for ( int tree = 0; tree < nbTrees; tree++ )
- {
- int t = ( int ) forest[tree].size();
- for ( int i = 0; i < t; i++ )
- {
- printf( "tree[%i]: left: %i, right: %i", i, forest[tree][i].left, forest[tree][i].right );
- if ( !forest[tree][i].isleaf && forest[tree][i].left != -1 )
- {
- cout << ", feat: " << forest[tree][i].feat->writeInfos() << " ";
- opOverview[forest[tree][i].feat->getOps()]++;
- }
- for ( int d = 0; d < ( int )forest[tree][i].dist.size(); d++ )
- {
- cout << " " << forest[tree][i].dist[d];
- }
- cout << endl;
- }
- }
- for ( uint c = 0; c < ops.size(); c++ )
- {
- cout << ops[c]->writeInfos() << ": " << opOverview[ops[c]->getOps()] << endl;
- }
- for ( uint c = 0; c < cops.size(); c++ )
- {
- cout << cops[c]->writeInfos() << ": " << opOverview[cops[c]->getOps()] << endl;
- }
- #endif
- }
- void SemSegContextTree::semanticseg( CachedExample *ce, NICE::Image & segresult, NICE::MultiChannelImageT<double> & probabilities )
- {
- int xsize;
- int ysize;
- ce->getImageSize( xsize, ysize );
- int numClasses = classNames->numClasses();
- fprintf( stderr, "ContextTree classification !\n" );
- probabilities.reInit( xsize, ysize, numClasses, true );
- probabilities.setAll( 0 );
- NICE::ColorImage img;
- std::string currentFile = Globals::getCurrentImgFN();
- try {
- img = ColorImage( currentFile );
- } catch ( Exception ) {
- cerr << "SemSeg: error opening image file <" << currentFile << ">" << endl;
- return;
- }
-
- MultiChannelImageT<double> feats;
- #ifdef LOCALFEATS
- lfcw->getFeats( img, feats );
- #else
- feats.reInit( xsize, ysize, 3, true );
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- for ( int r = 0; r < 3; r++ )
- {
- feats.set( x, y, img.getPixel( x, y, r ), r );
- }
- }
- }
-
- feats = ColorSpace::rgbtolab(feats);
- #endif
- bool allleaf = false;
- MultiChannelImageT<double> integralImg;
- MultiChannelImageT<int> currentfeats( xsize, ysize, nbTrees );
- currentfeats.setAll( 0 );
- depth = 0;
- while ( !allleaf )
- {
- allleaf = true;
-
-
- MultiChannelImageT<int> lastfeats = currentfeats;
- for ( int tree = 0; tree < nbTrees; tree++ )
- {
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++ )
- {
- int t = currentfeats.get( x, y, tree );
- if ( forest[tree][t].left > 0 )
- {
- allleaf = false;
- Features feat;
- feat.feats = &feats;
- feat.cfeats = &lastfeats;
- feat.cTree = tree;
- feat.tree = &forest[tree];
- feat.integralImg = &integralImg;
- double val = forest[tree][t].feat->getVal( feat, x, y );
- if ( val < forest[tree][t].decision )
- {
- currentfeats.set( x, y, forest[tree][t].left, tree );
- }
- else
- {
- currentfeats.set( x, y, forest[tree][t].right, tree );
- }
- }
- }
- }
-
- int channels = ( int )labelmap.size() + feats.channels();
- if ( integralImg.width() == 0 )
- {
- int xsize = feats.width();
- int ysize = feats.height();
- integralImg.reInit( xsize, ysize, channels );
- }
- }
- computeIntegralImage( currentfeats, feats, integralImg );
- depth++;
- }
- if ( pixelWiseLabeling )
- {
-
- long int offset = 0;
- for ( int x = 0; x < xsize; x++ )
- {
- for ( int y = 0; y < ysize; y++, offset++ )
- {
- double maxvalue = - numeric_limits<double>::max();
- int maxindex = 0;
- uint s = forest[0][0].dist.size();
- for ( uint i = 0; i < s; i++ )
- {
- probabilities.data[labelmapback[i]][offset] = getMeanProb( x, y, i, currentfeats );
- if ( probabilities.data[labelmapback[i]][offset] > maxvalue )
- {
- maxvalue = probabilities.data[labelmapback[i]][offset];
- maxindex = labelmapback[i];
- }
- segresult.setPixel( x, y, maxindex );
- }
- if ( maxvalue > 1 )
- cout << "maxvalue: " << maxvalue << endl;
- }
- }
- }
- else
- {
-
- Matrix regions;
- int regionNumber = segmentation->segRegions( img, regions );
- cout << "regions: " << regionNumber << endl;
- int dSize = forest[0][0].dist.size();
- vector<vector<double> > regionProbs( regionNumber, vector<double>( dSize, 0.0 ) );
- vector<int> bestlabels( regionNumber, 0 );
-
- for ( int y = 0; y < img.height(); y++ )
- {
- for ( int x = 0; x < img.width(); x++ )
- {
- int cregion = regions( x, y );
- for ( int d = 0; d < dSize; d++ )
- {
- regionProbs[cregion][d] += getMeanProb( x, y, d, currentfeats );
- }
- }
- }
- int roi = 38;
- for ( int r = 0; r < regionNumber; r++ )
- {
- double maxval = regionProbs[r][0];
- bestlabels[r] = 0;
- if ( roi == r )
- {
- cout << "r: " << r << endl;
- cout << "0: " << regionProbs[r][0] << endl;
- }
- for ( int d = 1; d < dSize; d++ )
- {
- if ( maxval < regionProbs[r][d] )
- {
- maxval = regionProbs[r][d];
- bestlabels[r] = d;
- }
- if ( roi == r )
- {
- cout << d << ": " << regionProbs[r][d] << endl;
- }
- }
- if ( roi == r )
- {
- cout << "bestlabel: " << bestlabels[r] << " danach: " << labelmapback[bestlabels[r]] << endl;
- }
- bestlabels[r] = labelmapback[bestlabels[r]];
- }
- for ( int y = 0; y < img.height(); y++ )
- {
- for ( int x = 0; x < img.width(); x++ )
- {
- segresult.setPixel( x, y, bestlabels[regions( x,y )] );
- }
- }
- }
- }
|