123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521 |
- #include "SemSegContextTree.h"
- #include "vislearning/baselib/Globals.h"
- #include "vislearning/baselib/ProgressBar.h"
- #include "core/basics/StringTools.h"
- #include "vislearning/cbaselib/CachedExample.h"
- #include "vislearning/cbaselib/PascalResults.h"
- #include "objrec/segmentation/RSMeanShift.h"
- #include "objrec/segmentation/RSGraphBased.h"
- #include "core/basics/numerictools.h"
- #include "core/basics/Timer.h"
- #include <omp.h>
- #include <iostream>
- #define BOUND(x,min,max) (((x)<(min))?(min):((x)>(max)?(max):(x)))
- #undef LOCALFEATS
- //#define LOCALFEATS
- using namespace OBJREC;
- using namespace std;
- using namespace NICE;
- class MCImageAccess:public ValueAccess
- {
- public:
- virtual double getVal(const Features &feats, const int &x, const int &y, const int &channel)
- {
- return feats.feats->get(x,y,channel);
- }
-
- virtual string writeInfos()
- {
- return "raw";
- }
- };
- class ClassificationResultAcess:public ValueAccess
- {
- public:
- virtual double getVal(const Features &feats, const int &x, const int &y, const int &channel)
- {
- return (*feats.tree)[feats.cfeats->get(x,y,feats.cTree)].dist[channel];
- }
-
- virtual string writeInfos()
- {
- return "context";
- }
- };
- class Minus:public Operation
- {
- public:
- virtual double getVal(const Features &feats, const int &x, const int &y)
- {
- int xsize, ysize;
- getXY(feats, xsize, ysize);
- double v1 = values->getVal(feats, BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),channel1);
- double v2 = values->getVal(feats, BOUND(x+x2,0,xsize-1),BOUND(y+y2,0,ysize-1),channel2);
- return v1-v2;
- }
-
- virtual Operation* clone()
- {
- return new Minus();
- }
-
- virtual string writeInfos()
- {
- string out = "Minus";
- if(values !=NULL)
- out+=values->writeInfos();
- return out;
- }
-
- virtual OperationTypes getOps()
- {
- return MINUS;
- }
- };
- class MinusAbs:public Operation
- {
- public:
- virtual double getVal(const Features &feats, const int &x, const int &y)
- {
- int xsize, ysize;
- getXY(feats, xsize, ysize);
- double v1 = values->getVal(feats, BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),channel1);
- double v2 = values->getVal(feats, BOUND(x+x2,0,xsize-1),BOUND(y+y2,0,ysize-1),channel2);
- return abs(v1-v2);
- }
-
- virtual Operation* clone()
- {
- return new MinusAbs();
- };
-
- virtual string writeInfos()
- {
- string out = "MinusAbs";
- if(values !=NULL)
- out+=values->writeInfos();
- return out;
- }
-
- virtual OperationTypes getOps()
- {
- return MINUSABS;
- }
- };
- class Addition:public Operation
- {
- public:
- virtual double getVal(const Features &feats, const int &x, const int &y)
- {
- int xsize, ysize;
- getXY(feats, xsize, ysize);
- double v1 = values->getVal(feats, BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),channel1);
- double v2 = values->getVal(feats, BOUND(x+x2,0,xsize-1),BOUND(y+y2,0,ysize-1),channel2);
- return v1+v2;
- }
-
- virtual Operation* clone()
- {
- return new Addition();
- }
-
- virtual string writeInfos()
- {
- string out = "Addition";
- if(values !=NULL)
- out+=values->writeInfos();
- return out;
- }
-
- virtual OperationTypes getOps()
- {
- return ADDITION;
- }
- };
- class Only1:public Operation
- {
- public:
- virtual double getVal(const Features &feats, const int &x, const int &y)
- {
- int xsize, ysize;
- getXY(feats, xsize, ysize);
- double v1 = values->getVal(feats, BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),channel1);
- return v1;
- }
-
- virtual Operation* clone()
- {
- return new Only1();
- }
-
- virtual string writeInfos()
- {
- string out = "Only1";
- if(values !=NULL)
- out+=values->writeInfos();
- return out;
- }
-
- virtual OperationTypes getOps()
- {
- return ONLY1;
- }
- };
- // uses mean of classification in window given by (x1,y1) (x2,y2)
- class IntegralOps:public Operation
- {
- public:
- virtual void set(int _x1, int _y1, int _x2, int _y2, int _channel1, int _channel2, ValueAccess *_values)
- {
- x1 = min(_x1,_x2);
- y1 = min(_y1,_y2);
- x2 = max(_x1,_x2);
- y2 = max(_y1,_y2);
- channel1 = _channel1;
- channel2 = _channel2;
- values = _values;
- }
-
- virtual double getVal(const Features &feats, const int &x, const int &y)
- {
- int xsize, ysize;
- getXY(feats, xsize, ysize);
- return computeMean(*feats.integralImg,BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),BOUND(x+x2,0,xsize-1),BOUND(y+y2,0,ysize-1),channel1);
- }
-
- inline double computeMean(const NICE::MultiChannelImageT<double> &intImg, const int &uLx, const int &uLy, const int &lRx, const int &lRy, const int &chan)
- {
- double val1 = intImg.get(uLx,uLy, chan);
- double val2 = intImg.get(lRx,uLy, chan);
- double val3 = intImg.get(uLx,lRy, chan);
- double val4 = intImg.get(lRx,lRy, chan);
- double area = (lRx-uLx)*(lRy-uLy);
- if(area == 0)
- return 0.0;
- return (val1+val4-val2-val3)/area;
- }
-
- virtual Operation* clone()
- {
- return new IntegralOps();
- }
-
- virtual string writeInfos()
- {
- return "IntegralOps";
- }
-
- virtual OperationTypes getOps()
- {
- return INTEGRAL;
- }
- };
- //uses mean of Integral image given by x1, y1 with current pixel as center
- class IntegralCenteredOps:public IntegralOps
- {
- public:
- virtual void set(int _x1, int _y1, int _x2, int _y2, int _channel1, int _channel2, ValueAccess *_values)
- {
- x1 = abs(_x1);
- y1 = abs(_y1);
- x2 = abs(_x2);
- y2 = abs(_y2);
- channel1 = _channel1;
- channel2 = _channel2;
- values = _values;
- }
-
- virtual double getVal(const Features &feats, const int &x, const int &y)
- {
- int xsize, ysize;
- getXY(feats, xsize, ysize);
- return computeMean(*feats.integralImg,BOUND(x-x1,0,xsize-1),BOUND(y-y1,0,ysize-1),BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),channel1);
- }
-
- virtual Operation* clone()
- {
- return new IntegralCenteredOps();
- }
-
- virtual string writeInfos()
- {
- return "IntegralCenteredOps";
- }
-
- virtual OperationTypes getOps()
- {
- return INTEGRALCENT;
- }
- };
- //uses different of mean of Integral image given by two windows, where (x1,y1) is the width and height of window1 and (x2,y2) of window 2
- class BiIntegralCenteredOps:public IntegralCenteredOps
- {
- public:
- virtual void set(int _x1, int _y1, int _x2, int _y2, int _channel1, int _channel2, ValueAccess *_values)
- {
- x1 = min(abs(_x1),abs(_x2));
- y1 = min(abs(_y1),abs(_y2));
- x2 = max(abs(_x1),abs(_x2));
- y2 = max(abs(_y1),abs(_y2));
- channel1 = _channel1;
- channel2 = _channel2;
- values = _values;
- }
-
- virtual double getVal(const Features &feats, const int &x, const int &y)
- {
- int xsize, ysize;
- getXY(feats, xsize, ysize);
- return computeMean(*feats.integralImg,BOUND(x-x1,0,xsize-1),BOUND(y-y1,0,ysize-1),BOUND(x+x1,0,xsize-1),BOUND(y+y1,0,ysize-1),channel1) - computeMean(*feats.integralImg,BOUND(x-x2,0,xsize-1),BOUND(y-y2,0,ysize-1),BOUND(x+x2,0,xsize-1),BOUND(y+y2,0,ysize-1),channel1);
- }
-
- virtual Operation* clone()
- {
- return new BiIntegralCenteredOps();
- }
-
- virtual string writeInfos()
- {
- return "BiIntegralCenteredOps";
- }
-
- virtual OperationTypes getOps()
- {
- return BIINTEGRALCENT;
- }
- };
- /** horizontal Haar features
- * ++
- * --
- */
- class HaarHorizontal:public IntegralCenteredOps
- {
- virtual double getVal(const Features &feats, const int &x, const int &y)
- {
- int xsize, ysize;
- getXY(feats, xsize, ysize);
-
- int tlx = BOUND(x-x1,0,xsize-1);
- int tly = BOUND(y-y1,0,ysize-1);
- int lrx = BOUND(x+x1,0,xsize-1);
- int lry = BOUND(y+y1,0,ysize-1);
-
- return computeMean(*feats.integralImg,tlx,tly,lrx, y,channel1)-computeMean(*feats.integralImg,tlx,y,lrx, lry,channel1);
- }
-
- virtual Operation* clone()
- {
- return new HaarHorizontal();
- }
-
- virtual string writeInfos()
- {
- return "HaarHorizontal";
- }
-
- virtual OperationTypes getOps()
- {
- return HAARHORIZ;
- }
- };
- /** vertical Haar features
- * +-
- * +-
- */
- class HaarVertical:public IntegralCenteredOps
- {
- virtual double getVal(const Features &feats, const int &x, const int &y)
- {
- int xsize, ysize;
- getXY(feats, xsize, ysize);
-
- int tlx = BOUND(x-x1,0,xsize-1);
- int tly = BOUND(y-y1,0,ysize-1);
- int lrx = BOUND(x+x1,0,xsize-1);
- int lry = BOUND(y+y1,0,ysize-1);
-
- return computeMean(*feats.integralImg,tlx,tly,x, lry,channel1)-computeMean(*feats.integralImg,x,tly,lrx, lry,channel1);
- }
-
- virtual Operation* clone()
- {
- return new HaarVertical();
- }
-
- virtual string writeInfos()
- {
- return "HaarVertical";
- }
-
- virtual OperationTypes getOps()
- {
- return HAARVERT;
- }
- };
- /** vertical Haar features
- * +-
- * -+
- */
- class HaarDiag:public IntegralCenteredOps
- {
- virtual double getVal(const Features &feats, const int &x, const int &y)
- {
- int xsize, ysize;
- getXY(feats, xsize, ysize);
-
- int tlx = BOUND(x-x1,0,xsize-1);
- int tly = BOUND(y-y1,0,ysize-1);
- int lrx = BOUND(x+x1,0,xsize-1);
- int lry = BOUND(y+y1,0,ysize-1);
-
- return computeMean(*feats.integralImg,tlx,tly,x, y,channel1)+computeMean(*feats.integralImg,x,y,lrx, lry,channel1) - computeMean(*feats.integralImg,tlx,y,x, lry,channel1)-computeMean(*feats.integralImg,x,tly,lrx, y,channel1);
- }
-
- virtual Operation* clone()
- {
- return new HaarDiag();
- }
-
- virtual string writeInfos()
- {
- return "HaarDiag";
- }
-
- virtual OperationTypes getOps()
- {
- return HAARDIAG;
- }
- };
- /** horizontal Haar features
- * +++
- * ---
- * +++
- */
- class Haar3Horiz:public BiIntegralCenteredOps
- {
- virtual double getVal(const Features &feats, const int &x, const int &y)
- {
- int xsize, ysize;
- getXY(feats, xsize, ysize);
-
- int tlx = BOUND(x-x2,0,xsize-1);
- int tly = BOUND(y-y2,0,ysize-1);
- int mtly = BOUND(y-y1,0,ysize-1);
- int mlry = BOUND(y+y1,0,ysize-1);
- int lrx = BOUND(x+x2,0,xsize-1);
- int lry = BOUND(y+y2,0,ysize-1);
-
- return computeMean(*feats.integralImg,tlx,tly,lrx, mtly,channel1) -computeMean(*feats.integralImg,tlx,mtly,lrx, mlry,channel1) + computeMean(*feats.integralImg,tlx,mlry,lrx, lry,channel1);
- }
-
- virtual Operation* clone()
- {
- return new Haar3Horiz();
- }
-
- virtual string writeInfos()
- {
- return "Haar3Horiz";
- }
-
- virtual OperationTypes getOps()
- {
- return HAAR3HORIZ;
- }
- };
- /** vertical Haar features
- * +-+
- * +-+
- * +-+
- */
- class Haar3Vert:public BiIntegralCenteredOps
- {
- virtual double getVal(const Features &feats, const int &x, const int &y)
- {
- int xsize, ysize;
- getXY(feats, xsize, ysize);
-
- int tlx = BOUND(x-x2,0,xsize-1);
- int tly = BOUND(y-y2,0,ysize-1);
- int mtlx = BOUND(x-x1,0,xsize-1);
- int mlrx = BOUND(x+x1,0,xsize-1);
- int lrx = BOUND(x+x2,0,xsize-1);
- int lry = BOUND(y+y2,0,ysize-1);
-
- return computeMean(*feats.integralImg,tlx,tly,mtlx, lry,channel1) -computeMean(*feats.integralImg,mtlx,tly,mlrx, lry,channel1) + computeMean(*feats.integralImg,mlrx,tly,lrx, lry,channel1);
- }
-
- virtual Operation* clone()
- {
- return new Haar3Vert();
- }
-
- virtual string writeInfos()
- {
- return "Haar3Vert";
- }
-
- virtual OperationTypes getOps()
- {
- return HAAR3VERT;
- }
- };
- SemSegContextTree::SemSegContextTree( const Config *conf, const MultiDataset *md )
- : SemanticSegmentation ( conf, &(md->getClassNames("train")) )
- {
- this->conf = conf;
- string section = "SSContextTree";
- lfcw = new LFColorWeijer(conf);
-
- grid = conf->gI(section, "grid", 10 );
-
- maxSamples = conf->gI(section, "max_samples", 2000);
-
- minFeats = conf->gI(section, "min_feats", 50 );
-
- maxDepth = conf->gI(section, "max_depth", 10 );
-
- windowSize = conf->gI(section, "window_size", 16);
-
- featsPerSplit = conf->gI(section, "feats_per_split", 200);
-
- useShannonEntropy = conf->gB(section, "use_shannon_entropy", true);
-
- nbTrees = conf->gI(section, "amount_trees", 1);
-
- string segmentationtype = conf->gS(section, "segmentation_type", "meanshift");
-
- useGaussian = conf->gB(section, "use_gaussian", true);
- if(useGaussian)
- throw("there something wrong with using gaussian! first fix it!");
-
- pixelWiseLabeling = false;
-
- if(segmentationtype == "meanshift")
- segmentation = new RSMeanShift(conf);
- else if (segmentationtype == "none")
- {
- segmentation = NULL;
- pixelWiseLabeling = true;
- }
- else if (segmentationtype == "felzenszwalb")
- segmentation = new RSGraphBased(conf);
- else
- throw("no valid segmenation_type\n please choose between none, meanshift and felzenszwalb\n");
-
-
- ftypes = conf->gI(section, "features", 2);;
-
- ops.push_back(new Minus());
- ops.push_back(new MinusAbs());
- ops.push_back(new Addition());
- ops.push_back(new Only1());
-
- cops.push_back(new BiIntegralCenteredOps());
- cops.push_back(new IntegralCenteredOps());
- cops.push_back(new IntegralOps());
- cops.push_back(new HaarHorizontal());
- cops.push_back(new HaarVertical());
- cops.push_back(new HaarDiag());
- cops.push_back(new Haar3Horiz());
- cops.push_back(new Haar3Vert());
-
- opOverview = vector<int>(NBOPERATIONS, 0);
-
- calcVal.push_back(new MCImageAccess());
- calcVal.push_back(new ClassificationResultAcess());
-
- classnames = md->getClassNames ( "train" );
-
- ///////////////////////////////////
- // Train Segmentation Context Trees
- ///////////////////////////////////
- train ( md );
- }
- SemSegContextTree::~SemSegContextTree()
- {
- }
- double SemSegContextTree::getBestSplit(std::vector<NICE::MultiChannelImageT<double> > &feats, std::vector<NICE::MultiChannelImageT<int> > ¤tfeats, std::vector<NICE::MultiChannelImageT<double> > &integralImgs, const std::vector<NICE::MatrixT<int> > &labels, int node, Operation *&splitop, double &splitval, const int &tree)
- {
- int imgCount = 0, featdim = 0;
- try
- {
- imgCount = (int)feats.size();
- featdim = feats[0].channels();
- }
- catch(Exception)
- {
- cerr << "no features computed?" << endl;
- }
-
- double bestig = -numeric_limits< double >::max();
- splitop = NULL;
- splitval = -1.0;
-
- set<vector<int> >selFeats;
- map<int,int> e;
- int featcounter = 0;
-
- for(int iCounter = 0; iCounter < imgCount; iCounter++)
- {
- int xsize = (int)currentfeats[iCounter].width();
- int ysize = (int)currentfeats[iCounter].height();
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- if(currentfeats[iCounter].get(x,y,tree) == node)
- {
- featcounter++;
- }
- }
- }
- }
-
- if(featcounter < minFeats)
- {
- cout << "only " << featcounter << " feats in current node -> it's a leaf" << endl;
- return 0.0;
- }
-
- vector<double> fraction(a.size(),0.0);
- for(uint i = 0; i < fraction.size(); i++)
- {
- if ( forbidden_classes.find ( labelmapback[i] ) != forbidden_classes.end() )
- fraction[i] = 0;
- else
- fraction[i] = ((double)maxSamples)/((double)featcounter*a[i]*a.size());
- //cout << "fraction["<<i<<"]: "<< fraction[i] << " a[" << i << "]: " << a[i] << endl;
- }
- //cout << "a.size(): " << a.size() << endl;
- //getchar();
- featcounter = 0;
-
- for(int iCounter = 0; iCounter < imgCount; iCounter++)
- {
- int xsize = (int)currentfeats[iCounter].width();
- int ysize = (int)currentfeats[iCounter].height();
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- if(currentfeats[iCounter].get(x,y,tree) == node)
- {
- int cn = labels[iCounter](x,y);
- double randD = (double)rand()/(double)RAND_MAX;
- if(randD < fraction[labelmap[cn]])
- {
- vector<int> tmp(3,0);
- tmp[0] = iCounter;
- tmp[1] = x;
- tmp[2] = y;
- featcounter++;
- selFeats.insert(tmp);
- e[cn]++;
- }
- }
- }
- }
- }
- //cout << "size: " << selFeats.size() << endl;
- //getchar();
-
- map<int,int>::iterator mapit;
- double globent = 0.0;
- for ( mapit=e.begin() ; mapit != e.end(); mapit++ )
- {
- //cout << "class: " << mapit->first << ": " << mapit->second << endl;
- double p = (double)(*mapit).second/(double)featcounter;
- globent += p*log2(p);
- }
- globent = -globent;
-
- if(globent < 0.5)
- {
- cout << "globent to small: " << globent << endl;
- return 0.0;
- }
-
- int classes = (int)forest[tree][0].dist.size();
- featsel.clear();
- for(int i = 0; i < featsPerSplit; i++)
- {
- int x1, x2, y1, y2;
- int ft = (int)((double)rand()/(double)RAND_MAX*(double)ftypes);
-
- int tmpws = windowSize;
-
- if(integralImgs[0].width() == 0)
- ft = 0;
-
- if(ft > 0)
- {
- tmpws *= 4;
- }
-
- if(useGaussian)
- {
- double sigma = (double)tmpws/2.0;
- x1 = randGaussDouble(sigma)*(double)tmpws;
- x2 = randGaussDouble(sigma)*(double)tmpws;
- y1 = randGaussDouble(sigma)*(double)tmpws;
- y2 = randGaussDouble(sigma)*(double)tmpws;
- }
- else
- {
- x1 = (int)((double)rand()/(double)RAND_MAX*(double)tmpws)-tmpws/2;
- x2 = (int)((double)rand()/(double)RAND_MAX*(double)tmpws)-tmpws/2;
- y1 = (int)((double)rand()/(double)RAND_MAX*(double)tmpws)-tmpws/2;
- y2 = (int)((double)rand()/(double)RAND_MAX*(double)tmpws)-tmpws/2;
- }
-
- if(ft == 0)
- {
- int f1 = (int)((double)rand()/(double)RAND_MAX*(double)featdim);
- int f2 = (int)((double)rand()/(double)RAND_MAX*(double)featdim);
- int o = (int)((double)rand()/(double)RAND_MAX*(double)ops.size());
- Operation *op = ops[o]->clone();
- op->set(x1,y1,x2,y2,f1,f2, calcVal[ft]);
- featsel.push_back(op);
- }
- else if(ft == 1)
- {
- int opssize = (int)ops.size();
- //opssize = 0;
- int o = (int)((double)rand()/(double)RAND_MAX*(((double)cops.size())+(double)opssize));
-
- Operation *op;
- if(o < opssize)
- {
- int chans = (int)forest[0][0].dist.size();
- int f1 = (int)((double)rand()/(double)RAND_MAX*(double)chans);
- int f2 = (int)((double)rand()/(double)RAND_MAX*(double)chans);
- op = ops[o]->clone();
- op->set(x1,y1,x2,y2,f1,f2, calcVal[ft]);
- }
- else
- {
- int chans = integralImgs[0].channels();
- int f1 = (int)((double)rand()/(double)RAND_MAX*(double)chans);
- int f2 = (int)((double)rand()/(double)RAND_MAX*(double)chans);
- o -= opssize;
- op = cops[o]->clone();
- op->set(x1,y1,x2,y2,f1,f2, calcVal[ft]);
- }
- featsel.push_back(op);
- }
- }
- #pragma omp parallel for private(mapit)
- for(int f = 0; f < featsPerSplit; f++)
- {
- double l_bestig = -numeric_limits< double >::max();
- double l_splitval = -1.0;
- set<vector<int> >::iterator it;
- vector<double> vals;
-
- for ( it=selFeats.begin() ; it != selFeats.end(); it++ )
- {
- Features feat;
- feat.feats = &feats[(*it)[0]];
- feat.cfeats = ¤tfeats[(*it)[0]];
- feat.cTree = tree;
- feat.tree = &forest[tree];
- feat.integralImg = &integralImgs[(*it)[0]];
- vals.push_back(featsel[f]->getVal(feat, (*it)[1], (*it)[2]));
- }
-
- int counter = 0;
- for ( it=selFeats.begin() ; it != selFeats.end(); it++ , counter++)
- {
- set<vector<int> >::iterator it2;
- double val = vals[counter];
-
- map<int,int> eL, eR;
- int counterL = 0, counterR = 0;
- int counter2 = 0;
- for ( it2=selFeats.begin() ; it2 != selFeats.end(); it2++, counter2++ )
- {
- int cn = labels[(*it2)[0]]((*it2)[1], (*it2)[2]);
- //cout << "vals[counter2] " << vals[counter2] << " val: " << val << endl;
- if(vals[counter2] < val)
- {
- //left entropie:
- eL[cn] = eL[cn]+1;
- counterL++;
- }
- else
- {
- //right entropie:
- eR[cn] = eR[cn]+1;
- counterR++;
- }
- }
-
- double leftent = 0.0;
- for ( mapit=eL.begin() ; mapit != eL.end(); mapit++ )
- {
- double p = (double)(*mapit).second/(double)counterL;
- leftent -= p*log2(p);
- }
-
- double rightent = 0.0;
- for ( mapit=eR.begin() ; mapit != eR.end(); mapit++ )
- {
- double p = (double)(*mapit).second/(double)counterR;
- rightent -= p*log2(p);
- }
- //cout << "rightent: " << rightent << " leftent: " << leftent << endl;
-
- double pl = (double)counterL/(double)(counterL+counterR);
- double ig = globent - (1.0-pl) * rightent - pl*leftent;
- //double ig = globent - rightent - leftent;
-
- if(useShannonEntropy)
- {
- double esplit = - ( pl*log(pl) + (1-pl)*log(1-pl) );
- ig = 2*ig / ( globent + esplit );
- }
-
- if(ig > l_bestig)
- {
- l_bestig = ig;
- l_splitval = val;
- }
- }
-
- #pragma omp critical
- {
- //cout << "globent: " << globent << " bestig " << bestig << " splitfeat: " << splitfeat << " splitval: " << splitval << endl;
- //cout << "globent: " << globent << " l_bestig " << l_bestig << " f: " << p << " l_splitval: " << l_splitval << endl;
- //cout << "p: " << featsubset[f] << endl;
- if(l_bestig > bestig)
- {
- bestig = l_bestig;
- splitop = featsel[f];
- splitval = l_splitval;
- }
- }
- }
- //splitop->writeInfos();
- //cout<< "ig: " << bestig << endl;
-
- /*for(int i = 0; i < featsPerSplit; i++)
- {
- if(featsel[i] != splitop)
- delete featsel[i];
- }*/
- #ifdef debug
- cout << "globent: " << globent << " bestig " << bestig << " splitval: " << splitval << endl;
- #endif
- return bestig;
- }
- inline double SemSegContextTree::getMeanProb(const int &x,const int &y,const int &channel, const MultiChannelImageT<int> ¤tfeats)
- {
- double val = 0.0;
- for(int tree = 0; tree < nbTrees; tree++)
- {
- val += forest[tree][currentfeats.get(x,y,tree)].dist[channel];
- }
-
- return val / (double)nbTrees;
- }
- void SemSegContextTree::computeIntegralImage(const NICE::MultiChannelImageT<int> ¤tfeats, const NICE::MultiChannelImageT<double> &lfeats, NICE::MultiChannelImageT<double> &integralImage)
- {
- int xsize = currentfeats.width();
- int ysize = currentfeats.height();
-
- int channels = (int)forest[0][0].dist.size();
- #pragma omp parallel for
- for(int c = 0; c < channels; c++)
- {
- integralImage.set(0,0,getMeanProb(0,0,c, currentfeats), c);
-
- //first column
- for(int y = 1; y < ysize; y++)
- {
- integralImage.set(0,y,getMeanProb(0,y,c, currentfeats)+integralImage.get(0,y,c), c);
- }
-
- //first row
- for(int x = 1; x < xsize; x++)
- {
- integralImage.set(x,0,getMeanProb(x,0,c, currentfeats)+integralImage.get(x,0,c), c);
- }
-
- //rest
- for(int y = 1; y < ysize; y++)
- {
- for(int x = 1; x < xsize; x++)
- {
- double val = getMeanProb(x,y,c,currentfeats)+integralImage.get(x,y-1,c)+integralImage.get(x-1,y,c)-integralImage.get(x-1,y-1,c);
- integralImage.set(x, y, val, c);
- }
- }
- }
-
- int channels2 = (int)lfeats.channels();
-
- xsize = lfeats.width();
- ysize = lfeats.height();
- if(integralImage.get(xsize-1,ysize-1,channels) == 0.0)
- {
- #pragma omp parallel for
- for(int c1 = 0; c1 < channels2; c1++)
- {
- int c = channels+c1;
- integralImage.set(0,0,lfeats.get(0,0,c1), c);
-
- //first column
- for(int y = 1; y < ysize; y++)
- {
- integralImage.set(0,y,lfeats.get(0,y,c1)+integralImage.get(0,y,c), c);
- }
-
- //first row
- for(int x = 1; x < xsize; x++)
- {
- integralImage.set(x,0,lfeats.get(x,0,c1)+integralImage.get(x,0,c), c);
- }
-
- //rest
- for(int y = 1; y < ysize; y++)
- {
- for(int x = 1; x < xsize; x++)
- {
- double val = lfeats.get(x,y,c1)+integralImage.get(x,y-1,c)+integralImage.get(x-1,y,c)-integralImage.get(x-1,y-1,c);
- integralImage.set(x, y, val, c);
- }
- }
- }
- }
- }
- void SemSegContextTree::train ( const MultiDataset *md )
- {
- const LabeledSet train = * ( *md ) ["train"];
- const LabeledSet *trainp = &train;
-
- ProgressBar pb ( "compute feats" );
- pb.show();
-
- //TODO: Speichefresser!, lohnt sich sparse?
- vector<MultiChannelImageT<double> > allfeats;
- vector<MultiChannelImageT<int> > currentfeats;
- vector<MatrixT<int> > labels;
- std::string forbidden_classes_s = conf->gS ( "analysis", "donttrain", "" );
- if ( forbidden_classes_s == "" )
- {
- forbidden_classes_s = conf->gS ( "analysis", "forbidden_classes", "" );
- }
-
- classnames.getSelection ( forbidden_classes_s, forbidden_classes );
-
- int imgcounter = 0;
-
- /*MultiChannelImageT<int> ttmp2(0,0,0);
- MultiChannelImageT<double> ttmp1(100,100,1);
- MultiChannelImageT<double> tint(100,100,1);
- ttmp1.setAll(1.0);
- tint.setAll(0.0);
- computeIntegralImage(ttmp2,ttmp1,tint);
-
- for(int i = 0; i < cops.size(); i++)
- {
- Features feats;
- feats.feats = ∭
- feats.cfeats = &ttmp2;
- feats.cTree = 0;
- feats.tree = new vector<TreeNode>;
- feats.integralImg = ∭
- cops[i]->set(-10, -6, 8, 9, 0, 0, new MCImageAccess());
- cout << "for: " << cops[i]->writeInfos() << endl;
- int y = 50;
- for(int x = 40; x < 44; x++)
- {
- cout << "x: " << x << " val: " << cops[i]->getVal(feats, x, y) << endl;
- }
- }
-
- getchar();*/
-
- LOOP_ALL_S ( *trainp )
- {
- EACH_INFO ( classno,info );
- NICE::ColorImage img;
- std::string currentFile = info.img();
- CachedExample *ce = new CachedExample ( currentFile );
- const LocalizationResult *locResult = info.localization();
- if ( locResult->size() <= 0 )
- {
- fprintf ( stderr, "WARNING: NO ground truth polygons found for %s !\n",
- currentFile.c_str() );
- continue;
- }
- fprintf ( stderr, "SemSegCsurka: Collecting pixel examples from localization info: %s\n", currentFile.c_str() );
- int xsize, ysize;
- ce->getImageSize ( xsize, ysize );
-
- MatrixT<int> tmpMat(xsize,ysize);
-
- currentfeats.push_back(MultiChannelImageT<int>(xsize,ysize,nbTrees));
- currentfeats[imgcounter].setAll(0);
- labels.push_back(tmpMat);
- try {
- img = ColorImage(currentFile);
- } catch (Exception) {
- cerr << "SemSeg: error opening image file <" << currentFile << ">" << endl;
- continue;
- }
- Globals::setCurrentImgFN ( currentFile );
- //TODO: resize image?!
- MultiChannelImageT<double> feats;
- allfeats.push_back(feats);
- #ifdef LOCALFEATS
- lfcw->getFeats(img, allfeats[imgcounter]);
- #else
- allfeats[imgcounter].reInit(xsize, ysize, 3, true);
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- for(int r = 0; r < 3; r++)
- {
- allfeats[imgcounter].set(x,y,img.getPixel(x,y,r),r);
- }
- }
- }
- #endif
-
- // getting groundtruth
- NICE::Image pixelLabels (xsize, ysize);
- pixelLabels.set(0);
- locResult->calcLabeledImage ( pixelLabels, ( *classNames ).getBackgroundClass() );
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- classno = pixelLabels.getPixel(x, y);
- labels[imgcounter](x,y) = classno;
- if ( forbidden_classes.find ( classno ) != forbidden_classes.end() )
- continue;
- labelcounter[classno]++;
-
- }
- }
-
- imgcounter++;
- pb.update ( trainp->count());
- delete ce;
- }
- pb.hide();
-
- map<int,int>::iterator mapit;
- int classes = 0;
- for(mapit = labelcounter.begin(); mapit != labelcounter.end(); mapit++)
- {
- labelmap[mapit->first] = classes;
-
- labelmapback[classes] = mapit->first;
- classes++;
- }
-
- //balancing
- int featcounter = 0;
- a = vector<double>(classes,0.0);
- for(int iCounter = 0; iCounter < imgcounter; iCounter++)
- {
- int xsize = (int)currentfeats[iCounter].width();
- int ysize = (int)currentfeats[iCounter].height();
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- featcounter++;
- int cn = labels[iCounter](x,y);
- a[labelmap[cn]] ++;
- }
- }
- }
-
- for(int i = 0; i < (int)a.size(); i++)
- {
- a[i] /= (double)featcounter;
- }
-
- #ifdef DEBUG
- for(int i = 0; i < (int)a.size(); i++)
- {
- cout << "a["<<i<<"]: " << a[i] << endl;
- }
- cout << "a.size: " << a.size() << endl;
- #endif
-
- int depth = 0;
- for(int t = 0; t < nbTrees; t++)
- {
- vector<TreeNode> tree;
- tree.push_back(TreeNode());
- tree[0].dist = vector<double>(classes,0.0);
- tree[0].depth = depth;
- forest.push_back(tree);
- }
-
- vector<int> startnode(nbTrees,0);
- bool allleaf = false;
- //int baseFeatSize = allfeats[0].size();
-
- vector<MultiChannelImageT<double> > integralImgs(imgcounter,MultiChannelImageT<double>());
-
- while(!allleaf && depth < maxDepth)
- {
- allleaf = true;
- vector<MultiChannelImageT<int> > lastfeats = currentfeats;
-
- #if 1
- Timer timer;
- timer.start();
- #endif
-
- for(int tree = 0; tree < nbTrees; tree++)
- {
- int t = (int) forest[tree].size();
- int s = startnode[tree];
- startnode[tree] = t;
- //TODO vielleicht parallel wenn nächste schleife trotzdem noch parallelsiert würde, die hat mehr gewicht
- //#pragma omp parallel for
- for(int i = s; i < t; i++)
- {
- if(!forest[tree][i].isleaf && forest[tree][i].left < 0)
- {
- Operation *splitfeat = NULL;
- double splitval;
- double bestig = getBestSplit(allfeats, lastfeats, integralImgs, labels, i, splitfeat, splitval, tree);
-
- forest[tree][i].feat = splitfeat;
- forest[tree][i].decision = splitval;
-
- if(splitfeat != NULL)
- {
- allleaf = false;
- int left = forest[tree].size();
- forest[tree].push_back(TreeNode());
- forest[tree].push_back(TreeNode());
- int right = left+1;
- forest[tree][i].left = left;
- forest[tree][i].right = right;
- forest[tree][left].dist = vector<double>(classes, 0.0);
- forest[tree][right].dist = vector<double>(classes, 0.0);
- forest[tree][left].depth = depth+1;
- forest[tree][right].depth = depth+1;
-
- #pragma omp parallel for
- for(int iCounter = 0; iCounter < imgcounter; iCounter++)
- {
- int xsize = currentfeats[iCounter].width();
- int ysize = currentfeats[iCounter].height();
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- if(currentfeats[iCounter].get(x, y, tree) == i)
- {
- Features feat;
- feat.feats = &allfeats[iCounter];
- feat.cfeats = &lastfeats[iCounter];
- feat.cTree = tree;
- feat.tree = &forest[tree];
- feat.integralImg = &integralImgs[iCounter];
- double val = splitfeat->getVal(feat,x,y);
- if(val < splitval)
- {
- currentfeats[iCounter].set(x,y,left,tree);
- forest[tree][left].dist[labelmap[labels[iCounter](x,y)]]++;
- }
- else
- {
- currentfeats[iCounter].set(x,y,right,tree);
- forest[tree][right].dist[labelmap[labels[iCounter](x,y)]]++;
- }
- }
- }
- }
- }
-
- double lcounter = 0.0, rcounter = 0.0;
- for(uint d = 0; d < forest[tree][left].dist.size(); d++)
- {
- if ( forbidden_classes.find ( labelmapback[d] ) != forbidden_classes.end() )
- {
- forest[tree][left].dist[d] = 0;
- forest[tree][right].dist[d] = 0;
- }
- else
- {
- forest[tree][left].dist[d]/=a[d];
- lcounter +=forest[tree][left].dist[d];
- forest[tree][right].dist[d]/=a[d];
- rcounter +=forest[tree][right].dist[d];
- }
- }
-
- if(lcounter <= 0 || rcounter <= 0)
- {
- cout << "lcounter : " << lcounter << " rcounter: " << rcounter << endl;
- cout << "splitval: " << splitval << " splittype: " << splitfeat->writeInfos() << endl;
- cout << "bestig: " << bestig << endl;
- for(int iCounter = 0; iCounter < imgcounter; iCounter++)
- {
- int xsize = currentfeats[iCounter].width();
- int ysize = currentfeats[iCounter].height();
- int counter = 0;
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- if(lastfeats[iCounter].get(x,y,tree) == i)
- {
- if(++counter > 30)
- break;
- Features feat;
- feat.feats = &allfeats[iCounter];
- feat.cfeats = &lastfeats[iCounter];
- feat.cTree = tree;
- feat.tree = &forest[tree];
- feat.integralImg = &integralImgs[iCounter];
- double val = splitfeat->getVal(feat,x,y);
- cout << "splitval: " << splitval << " val: " << val << endl;
- }
- }
- }
- }
- assert(lcounter > 0 && rcounter > 0);
- }
-
- for(uint d = 0; d < forest[tree][left].dist.size(); d++)
- {
- forest[tree][left].dist[d]/=lcounter;
- forest[tree][right].dist[d]/=rcounter;
- }
- }
- else
- {
- forest[tree][i].isleaf = true;
- }
- }
- }
- }
- //TODO: features neu berechnen!
-
- //compute integral image
- int channels = classes+allfeats[0].channels();
-
- if(integralImgs[0].width() == 0)
- {
- for(int i = 0; i < imgcounter; i++)
- {
- int xsize = allfeats[i].width();
- int ysize = allfeats[i].height();
- integralImgs[i].reInit(xsize, ysize, channels);
- integralImgs[i].setAll(0.0);
- }
- }
-
- for(int i = 0; i < imgcounter; i++)
- {
- computeIntegralImage(currentfeats[i],allfeats[i], integralImgs[i]);
- }
- #if 1
- timer.stop();
- cout << "time for depth " << depth << ": " << timer.getLast() << endl;
- #endif
- depth++;
- #ifdef DEBUG
- cout << "depth: " << depth << endl;
- #endif
- }
-
- #ifdef DEBUG
- for(int tree = 0; tree < nbTrees; tree++)
- {
- int t = (int) forest[tree].size();
- for(int i = 0; i < t; i++)
- {
- printf("tree[%i]: left: %i, right: %i", i, forest[tree][i].left, forest[tree][i].right);
- if(!forest[tree][i].isleaf && forest[tree][i].left != -1)
- {
- cout << ", feat: " << forest[tree][i].feat->writeInfos() << " ";
- opOverview[forest[tree][i].feat->getOps()]++;
- }
- for(int d = 0; d < (int)forest[tree][i].dist.size(); d++)
- {
- cout << " " << forest[tree][i].dist[d];
- }
- cout << endl;
- }
- }
-
- for(uint c = 0; c < ops.size(); c++)
- {
- cout << ops[c]->writeInfos() << ": " << opOverview[ops[c]->getOps()] << endl;
- }
-
- for(uint c = 0; c < cops.size(); c++)
- {
- cout << cops[c]->writeInfos() << ": " << opOverview[cops[c]->getOps()] << endl;
- }
- #endif
- }
- void SemSegContextTree::semanticseg ( CachedExample *ce, NICE::Image & segresult,NICE::MultiChannelImageT<double> & probabilities )
- {
- int xsize;
- int ysize;
- ce->getImageSize ( xsize, ysize );
-
- int numClasses = classNames->numClasses();
-
- fprintf (stderr, "ContextTree classification !\n");
- probabilities.reInit ( xsize, ysize, numClasses, true );
- probabilities.setAll ( 0 );
- NICE::ColorImage img;
- std::string currentFile = Globals::getCurrentImgFN();
-
- try {
- img = ColorImage(currentFile);
- } catch (Exception) {
- cerr << "SemSeg: error opening image file <" << currentFile << ">" << endl;
- return;
- }
-
- //TODO: resize image?!
-
- MultiChannelImageT<double> feats;
- #ifdef LOCALFEATS
- lfcw->getFeats(img, feats);
- #else
- feats.reInit (xsize, ysize, 3, true);
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- for(int r = 0; r < 3; r++)
- {
- feats.set(x,y,img.getPixel(x,y,r),r);
- }
- }
- }
- #endif
-
- bool allleaf = false;
-
- MultiChannelImageT<double> integralImg;
-
- MultiChannelImageT<int> currentfeats(xsize, ysize, nbTrees);
- currentfeats.setAll(0);
- int depth = 0;
- while(!allleaf)
- {
- allleaf = true;
- //TODO vielleicht parallel wenn nächste schleife auch noch parallelsiert würde, die hat mehr gewicht
- //#pragma omp parallel for
- MultiChannelImageT<int> lastfeats = currentfeats;
- for(int tree = 0; tree < nbTrees; tree++)
- {
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++)
- {
- int t = currentfeats.get(x,y,tree);
- if(forest[tree][t].left > 0)
- {
- allleaf = false;
- Features feat;
- feat.feats = &feats;
- feat.cfeats = &lastfeats;
- feat.cTree = tree;
- feat.tree = &forest[tree];
- feat.integralImg = &integralImg;
-
- double val = forest[tree][t].feat->getVal(feat,x,y);
-
- if(val < forest[tree][t].decision)
- {
- currentfeats.set(x, y, forest[tree][t].left, tree);
- }
- else
- {
- currentfeats.set(x, y, forest[tree][t].right, tree);
- }
- }
- }
- }
-
- //compute integral image
- int channels = (int)labelmap.size()+feats.channels();
-
- if(integralImg.width() == 0)
- {
- int xsize = feats.width();
- int ysize = feats.height();
-
- integralImg.reInit(xsize, ysize, channels);
- }
- }
- computeIntegralImage(currentfeats,feats, integralImg);
-
- depth++;
- }
-
- if(pixelWiseLabeling)
- {
- //finales labeln:
- long int offset = 0;
- for(int x = 0; x < xsize; x++)
- {
- for(int y = 0; y < ysize; y++,offset++)
- {
- double maxvalue = - numeric_limits<double>::max(); //TODO: das muss nur pro knoten gemacht werden, nicht pro pixel
- int maxindex = 0;
- uint s = forest[0][0].dist.size();
- for(uint i = 0; i < s; i++)
- {
- probabilities.data[labelmapback[i]][offset] = getMeanProb(x,y,i,currentfeats);
- if(probabilities.data[labelmapback[i]][offset] > maxvalue)
- {
- maxvalue = probabilities.data[labelmapback[i]][offset];
- maxindex = labelmapback[i];
- }
- segresult.setPixel(x,y,maxindex);
- }
- if(maxvalue > 1)
- cout << "maxvalue: " << maxvalue << endl;
- }
- }
- }
- else
- {
- //final labeling using segmentation
- //TODO: segmentation
- Matrix regions;
- int regionNumber = segmentation->segRegions(img,regions);
- cout << "regions: " << regionNumber << endl;
- int dSize = forest[0][0].dist.size();
- vector<vector<double> > regionProbs(regionNumber, vector<double>(dSize,0.0));
- vector<int> bestlabels(regionNumber, 0);
-
- /*
- for(int r = 0; r < regionNumber; r++)
- {
- Image over(img.width(), img.height());
- for(int y = 0; y < img.height(); y++)
- {
- for(int x = 0; x < img.width(); x++)
- {
- if(((int)regions(x,y)) == r)
- over.setPixel(x,y,1);
- else
- over.setPixel(x,y,0);
- }
- }
- cout << "r: " << r << endl;
- showImageOverlay(img, over);
- }
- */
-
- for(int y = 0; y < img.height(); y++)
- {
- for(int x = 0; x < img.width(); x++)
- {
- int cregion = regions(x,y);
- for(int d = 0; d < dSize; d++)
- {
- regionProbs[cregion][d]+=getMeanProb(x,y,d,currentfeats);
- }
- }
- }
-
- int roi = 38;
-
- for(int r = 0; r < regionNumber; r++)
- {
- double maxval = regionProbs[r][0];
- bestlabels[r] = 0;
- if(roi == r)
- {
- cout << "r: " << r << endl;
- cout << "0: " << regionProbs[r][0] << endl;
- }
- for(int d = 1; d < dSize; d++)
- {
- if(maxval < regionProbs[r][d])
- {
- maxval = regionProbs[r][d];
- bestlabels[r] = d;
- }
- if(roi == r)
- {
- cout << d << ": " << regionProbs[r][d] << endl;
- }
- }
- if(roi == r)
- {
- cout << "bestlabel: " << bestlabels[r] << " danach: " << labelmapback[bestlabels[r]] << endl;
- }
- bestlabels[r] = labelmapback[bestlabels[r]];
- }
-
- for(int y = 0; y < img.height(); y++)
- {
- for(int x = 0; x < img.width(); x++)
- {
-
- segresult.setPixel(x,y,bestlabels[regions(x,y)]);
- }
- }
- }
- }
|